login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000291 Number of bipartite partitions of n white objects and 2 black ones.
(Formerly M1168 N0447)
6
2, 4, 9, 16, 29, 47, 77, 118, 181, 267, 392, 560, 797, 1111, 1541, 2106, 2863, 3846, 5142, 6808, 8973, 11733, 15275, 19753, 25443, 32582, 41569, 52770, 66757, 84078, 105555, 131995, 164566, 204450, 253292, 312799, 385285, 473183, 579722, 708353, 863553 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Number of ways to factor p^n*q^2 where p and q are distinct primes.

a(n) = if n <= 2 then A054225(2,n) else A054225(n,2). - Reinhard Zumkeller, Nov 30 2011

REFERENCES

M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.

Amarnath Murthy, "Generalization of Smarandache Factor Partition introducing Smarandache Factor Partition". Smarandache Notions Journal, 1-2-3, vol. 11, 2000.

Amarnath Murthy, Program for finding out the number of Smarandache Factor Partitions. Smarandache Notions Journal, Vol. 13, 2002.

Amarnath Murthy, e-book, MS LIT format, "Ideas on Smarandache Notions".

Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.9, 1.14.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..5000 from Alois P. Heinz)

F. C. Auluck, On partitions of bipartite numbers, Proc. Cambridge Philos. Soc. 49, (1953). 72-83.

F. C. Auluck, On partitions of bipartite numbers, annotated scan of a few pages.

M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956 (Annotated scanned pages from, plus a review)

FORMULA

From Vaclav Kotesovec, Feb 01 2016, corrected Nov 05 2016: (Start)

a(n) = A000070(n) + A000097(n).

a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (4*Pi^2) * (1 + 83*Pi/(24*sqrt(6*n))).

(End)

EXAMPLE

a(2) = 9: let p = 2 and q = 3, p^2*q^2 = 36; there are 9 factorizations: (36), (18*2), (12*3), (9*4), (9*2^2), (6*6), (6*3*2), (4*3^2), (3^2*2^2).

MATHEMATICA

max = 40; col = 2; s1 = Series[Product[1/(1-x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}] // Normal; s2 = Series[s1, {x, 0, max+1}]; a[n_] := SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[ a[n] , {n, 0, max}] (* Jean-Fran├žois Alcover, Mar 13 2014 *)

nmax = 50; CoefficientList[Series[1/(1-x)*(1 + 1/(1-x^2))*Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

CROSSREFS

Column 2 of A054225.

Cf. A005380.

Sequence in context: A114080 A090676 A261240 * A081055 A034446 A174511

Adjacent sequences:  A000288 A000289 A000290 * A000292 A000293 A000294

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Edited by Christian G. Bower, Jan 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 23 12:18 EDT 2017. Contains 283951 sequences.