

A292272


a(n) = n  A048735(n) = n  (n AND floor(n/2)).


8



0, 1, 2, 2, 4, 5, 4, 4, 8, 9, 10, 10, 8, 9, 8, 8, 16, 17, 18, 18, 20, 21, 20, 20, 16, 17, 18, 18, 16, 17, 16, 16, 32, 33, 34, 34, 36, 37, 36, 36, 40, 41, 42, 42, 40, 41, 40, 40, 32, 33, 34, 34, 36, 37, 36, 36, 32, 33, 34, 34, 32, 33, 32, 32, 64, 65, 66, 66, 68, 69, 68, 68, 72, 73, 74, 74, 72, 73, 72, 72, 80, 81, 82, 82, 84, 85, 84, 84, 80, 81, 82, 82, 80, 81
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

In binary expansion of n, change those 1's to 0's that have an 1bit next to them at their left (more significant) side. Only fibbinary numbers (A003714) occur as terms.


LINKS

Antti Karttunen, Table of n, a(n) for n = 0..16383
Index entries for sequences related to binary expansion of n


FORMULA

a(n) = n  A048735(n) = n  (n AND floor(n/2)) = n XOR (n AND floor(n/2)), where AND is bitwiseAND (A004198) and XOR is bitwiseXOR (A003987).
a(n) = n AND A003188(n).
a(n) = A292382(A005940(1+n)).
A059905(a(n)) = A292371(n).
For all n >= 0, A085357(a(n)) = 1.
a(n) = A213064(n) / 2.  Kevin Ryde, Jun 02 2020


EXAMPLE

From Kevin Ryde, Jun 02 2020: (Start)
n = 1831 = binary 11100100111
a(n) = 1060 = binary 10000100100 high 1 of each run
(End)


MATHEMATICA

Table[n  BitAnd[n, Floor[n/2]], {n, 0, 93}] (* Michael De Vlieger, Sep 17 2017 *)


PROG

(PARI) a(n) = bitnegimply(n, n>>1); \\ Kevin Ryde, Jun 02 2020


CROSSREFS

Cf. A003188, A003714, A003987, A004198, A005940, A048735, A085357, A292371, A292382.
Sequence in context: A130265 A187214 A179821 * A292248 A210762 A302985
Adjacent sequences: A292269 A292270 A292271 * A292273 A292274 A292275


KEYWORD

nonn,base


AUTHOR

Antti Karttunen, Sep 16 2017


STATUS

approved



