The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003987 Table of n XOR m (or Nim-sum of n and m) read by antidiagonals, i.e., with entries in the order (n,m) = (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ... 171
 0, 1, 1, 2, 0, 2, 3, 3, 3, 3, 4, 2, 0, 2, 4, 5, 5, 1, 1, 5, 5, 6, 4, 6, 0, 6, 4, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 6, 4, 6, 0, 6, 4, 6, 8, 9, 9, 5, 5, 1, 1, 5, 5, 9, 9, 10, 8, 10, 4, 2, 0, 2, 4, 10, 8, 10, 11, 11, 11, 11, 3, 3, 3, 3, 11, 11, 11, 11, 12, 10, 8, 10, 12, 2, 0, 2, 12, 10, 8, 10, 12, 13, 13, 9, 9 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Another way to construct the array: construct an infinite square matrix starting in the top left corner using the rule that each entry is the smallest nonnegative number that is not in the row to your left or in the column above you. After a few moves the [symmetric] matrix looks like this:   0 1 2 3 4 5 ...   1 0 3 2 5 ...   2 3 0 1 ?   3 2 1   4 5 ?   5 The ? is then replaced with a 6. REFERENCES E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 60. J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53. Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date? D. Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 190. [From N. J. A. Sloane, Jul 14 2009] R. K. Guy, Impartial games, pp. 35-55 of Combinatorial Games, ed. R. K. Guy, Proc. Sympos. Appl. Math., 43, Amer. Math. Soc., 1991. LINKS T. D. Noe, Rows n = 0..100 of triangle, flattened J.-P. Allouche and J. Shallit, The Ring of k-regular Sequences, II, Theoret. Computer Sci., 307 (2003), 3-29. Rémy Sigrist, Colored representation of T(x,y) for x = 0..1023 and y = 0..1023 (where the hue is function of T(x,y) and black pixels correspond to zeros) N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98). FORMULA T(2i,2j) = 2T(i,j), T(2i+1,2j) = 2T(i,j) + 1. EXAMPLE Table begins    0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, ...    1,  0,  3,  2,  5,  4,  7,  6,  9,  8, 11, 10, ...    2,  3,  0,  1,  6,  7,  4,  5, 10, 11,  8, ...    3,  2,  1,  0,  7,  6,  5,  4, 11, 10, ...    4,  5,  6,  7,  0,  1,  2,  3, 12, ...    5,  4,  7,  6,  1,  0,  3,  2, ...    6,  7,  4,  5,  2,  3,  0, ...    7,  6,  5,  4,  3,  2, ...    8,  9, 10, 11, 12, ...    9,  8, 11, 10, ...   10, 11,  8, ...   11, 10, ...   12, ...   ... The first few antidiagonals are    0;    1,  1;    2,  0,  2;    3,  3,  3,  3;    4,  2,  0,  2,  4;    5,  5,  1,  1,  5,  5;    6,  4,  6,  0,  6,  4,  6;    7,  7,  7,  7,  7,  7,  7,  7;    8,  6,  4,  6,  0,  6,  4,  6,  8;    9,  9,  5,  5,  1,  1,  5,  5,  9,  9;   10,  8, 10,  4,  2,  0,  2,  4, 10,  8, 10;   11, 11, 11, 11,  3,  3,  3,  3, 11, 11, 11, 11;   12, 10,  8, 10, 12,  2,  0,  2, 12, 10,  8, 10, 12;   ... [Symmetric] matrix in base 2:      0    1   10   11  100  101,  110  111 1000 1001 1010 1011 ...      1    0   11   10  101  100,  111  110 1001 1000 1011  ...     10   11    0    1  110  111,  100  101 1010 1011  ...     11   10    1    0  111  110,  101  100 1011  ...    100  101  110  111    0    1    10   11  ...    101  100  111  110    1    0    11  ...    110  111  100  101   10   11   ...    111  110  101  100   11  ...   1000 1001 1010 1011  ...   1001 1000 1011  ...   1010 1011  ...   1011  ...    ... MAPLE nimsum := proc(a, b) local t1, t2, t3, t4, l; t1 := convert(a+2^20, base, 2); t2 := convert(b+2^20, base, 2); t3 := evalm(t1+t2); map(x->x mod 2, t3); t4 := convert(evalm(%), list); l := convert(t4, base, 2, 10); sum(l[k]*10^(k-1), k=1..nops(l)); end; # memo: adjust 2^20 to be much bigger than a and b AT := array(0..N, 0..N); for a from 0 to N do for b from a to N do AT[a, b] := nimsum(a, b); AT[b, a] := AT[a, b]; od: od: # alternative: read("transforms") : A003987 := proc(n, m)     XORnos(n, m) ; end proc: # R. J. Mathar, Apr 17 2013 seq(seq(Bits:-Xor(k, m-k), k=0..m), m=0..20); # Robert Israel, Dec 31 2015 MATHEMATICA Flatten[Table[BitXor[b, a - b], {a, 0, 10}, {b, 0, a}]] (* BitXor and Nim Sum are equivalent *) PROG (PARI) tabl(nn) = {for(n=0, nn, for(k=0, n, print1(bitxor(k, n - k), ", "); ); print(); ); }; tabl(13) \\ Indranil Ghosh, Mar 31 2017 (Python) for n in range(14):     print([k^(n - k) for k in range(n + 1)]) # Indranil Ghosh, Mar 31 2017 CROSSREFS Initial rows are A001477, A004442, A004443, A004444, etc. Cf. A051775, A051776. Cf. A003986 (OR) and A004198 (AND). Antidiagonal sums are in A006582. Sequence in context: A185815 A332448 A321132 * A307302 A307297 A307301 Adjacent sequences:  A003984 A003985 A003986 * A003988 A003989 A003990 KEYWORD tabl,nonn,nice,look AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 20:05 EDT 2020. Contains 337173 sequences. (Running on oeis4.)