login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A288687 Number of n-digit biquanimous strings using digits {0,1,2,3}. 2
1, 1, 4, 19, 92, 421, 1830, 7687, 31624, 128521, 518666, 2084875, 8361996, 33497101, 134094862, 536608783, 2146926608, 8588754961, 34357248018, 137433710611, 549744803860, 2199000186901, 8796044787734, 35184271425559, 140737278640152, 562949517213721 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A biquanimous string is a string whose digits can be split into two groups with equal sums.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (10,-37,64,-52,16).

FORMULA

G.f.: (1 - 9*x + 31*x^2 - 48*x^3 + 38*x^4 - 16*x^5) / ((1 - x)^2*(1 - 2*x)^2*(1 - 4*x)).

a(n) = 1 + A064671(n) for n > 0.

From Colin Barker, Dec 16 2017: (Start)

a(n) = (2^(2*n-1) + n - 2^(n-1)*(1+n)).

a(n) = 10*a(n-1) - 37*a(n-2) + 64*a(n-3) - 52*a(n-4) + 16*a(n-5) for n>5.

(End)

MATHEMATICA

LinearRecurrence[{10, -37, 64, -52, 16}, {1, 1, 4, 19, 92, 421}, 30] (* Harvey P. Dale, Jul 29 2017 *)

PROG

(PARI) Vec((1 - 9*x + 31*x^2 - 48*x^3 + 38*x^4 - 16*x^5) / ((1 - x)^2*(1 - 2*x)^2*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Dec 16 2017

CROSSREFS

Column k=3 of A288638.

Sequence in context: A151253 A121179 A181950 * A275751 A131552 A122369

Adjacent sequences:  A288684 A288685 A288686 * A288688 A288689 A288690

KEYWORD

nonn,easy

AUTHOR

Alois P. Heinz, Jun 13 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 09:34 EST 2018. Contains 318160 sequences. (Running on oeis4.)