login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005635 Number of ways of placing n non-attacking bishops on an n X n board so that every square is attacked (or occupied).
(Formerly M2761)
10
1, 1, 1, 1, 3, 8, 36, 110, 666, 3250, 23436, 125198, 1037520, 7241272, 66360960, 500827928, 5080370400, 45926666984, 508032504000, 4919789029480, 59256857923200, 656763542278304, 8532986822438400, 100525959568386848, 1405335514253932800, 18431883489984091552 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

From Vaclav Kotesovec, Apr 26 2012: (Start)

This sequence gives (according to the article by Robinson) the number of inequivalent solutions.

For the total number of all arrangements of n non-attacking bishops such that every square of the board is controlled by at least one bishop, see A122749.

For the total number of all arrangements of n bishops (in any position) such that every square of the board is controlled by at least one bishop, see A182333.

(End)

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..250

R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).

R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)

MAPLE

E:=proc(n) local k; if n mod 2 = 0 then k := n/2; if k mod 2 = 0 then RETURN( (k!*(k+2)/2)^2 ); else RETURN( ((k-1)!*(k+1)^2/2)^2 ); fi; else k := (n-1)/2; if k mod 2 = 0 then RETURN( ((k!)^2/12)*(3*k^3+16*k^2+18*k+8) ); else RETURN( ((k-1)!*(k+1)!/12)*(3*k^3+13*k^2-k-3) ); fi; fi; end; # Gives A122749

unprotect(D); D:=proc(n) option remember; if n <= 1 then 1 else D(n-1)+(n-1)*D(n-2); fi; end; # Gives A000085

C:=proc(n) local k; if n mod 2 = 0 then RETURN(0); fi; k:=(n-1)/2; if k mod 2 = 0 then RETURN( k*2^(k-1)*((k/2)!)^2 ); else RETURN( 2^k*(((k+1)/2)!)^2 ); fi; end; # Gives A122693

Q:=proc(n) local m; if n mod 8 <> 1 then RETURN(0); fi; m:=(n-1)/8; ((2*m)!)^2/(m!)^2; end; # Gives A122747

M:=proc(n) local k; if n mod 2 = 0 then k:=n/2; if k mod 2 = 0 then RETURN( k!*(k+2)/2 ); else RETURN( (k-1)!*(k+1)^2/2 ); fi; else k:=(n-1)/2; RETURN(D(k)*D(k+1)); fi; end; # Gives A122748

a:=n-> if n <= 1 then RETURN(1) else E(n)/8 + C(n)/8 + Q(n)/4 + M(n)/4; fi; # Gives A005635

# The following additional Maple programs produce A123071, A005631, A123072, A005633, A005632, A005634

S:=proc(n) local k; if n mod 2 = 0 then RETURN(0) else k:=(n-1)/2; RETURN(B(k)*B(k+1)); fi; end; # Gives A123071

psi:=n->S(n)/2; # Gives A005631

zeta:=n->Q(n)/2; # Gives A123072

mu:=n->(M(n)-S(n))/2; # Gives A005633

chi:=n->(C(n)-S(n)-Q(n))/4; # Gives A005632

eps:=n->E(n)/8-C(n)/8+S(n)/4-M(n)/4; # Gives A005634

CROSSREFS

Cf. A005631, A005632, A005633, A005634, A122749, A123071, A123072, A182333.

Sequence in context: A294385 A020099 A182392 * A026649 A148919 A087905

Adjacent sequences:  A005632 A005633 A005634 * A005636 A005637 A005638

KEYWORD

easy,nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Entry revised by N. J. A. Sloane, Sep 25 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 22:34 EDT 2019. Contains 328335 sequences. (Running on oeis4.)