The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002944 a(n) = LCM(1,2,...,n) / n. (Formerly M0912 N0344) 31
 1, 1, 2, 3, 12, 10, 60, 105, 280, 252, 2520, 2310, 27720, 25740, 24024, 45045, 720720, 680680, 12252240, 11639628, 11085360, 10581480, 232792560, 223092870, 1070845776, 1029659400, 2974571600, 2868336900, 80313433200, 77636318760, 2329089562800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Equals LCM of all numbers of (n-1)-st row of Pascal's triangle [Montgomery-Breusch]. - J. Lowell, Apr 16 2014. Corrected by N. J. A. Sloane, Sep 04 2019 Williams proves that a(n+1) = A034386(n) for n=2, 11 and 23 only. This is trivially the case for n=0 and 1, too. - Michel Marcus, Apr 16 2020 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..500 Bakir Farhi, An identity involving the least common multiple of binomial coefficients and its application, arXiv:0906.2295. Bakir Farhi, An identity involving the least common multiple of binomial coefficients and its application, Amer. Math. Monthly, 116 (2009), 836-839. Peter L. Montgomery (proposer) and Robert Breusch (solver), LCM of Binomial Coefficients, Problem E2686, American Mathematical Monthly, Vol. 84 (1977), p. 820. Peter L. Montgomery (proposer) and Robert Breusch (solver), LCM of Binomial Coefficients, Solution to Problem E2686, American Mathematical Monthly, Vol. 86 (1979), p. 131. Ian S. Williams, On a problem of Kurt Mahler concerning binomial coefficents (sic), Bulletin of the Australian Mathematical Society, Volume 14, Issue 2, April 1976, pp. 299-302. FORMULA a(n) = A003418(n) / n. a(n) = LCM of C(n-1, 0), C(n-1, 1), ..., C(n-1, n-1). [Montgomery-Breusch] [Corrected by N. J. A. Sloane, Jun 11 2008] Equally, a(n+1) = LCM_{k=0..n} binomial(n,k). - Franklin T. Adams-Watters, Jul 05 2009 MAPLE A003418 := n-> lcm(seq(i, i=1..n)); f:=n->A003418(n)/n; BB:=n->sum(1/sqrt(k), k=1..n): a:=n->floor(denom(BB(n))/n): seq(a(n), n=1..29); # Zerinvary Lajos, Mar 29 2007 MATHEMATICA Table[Apply[LCM, Range[n]]/n, {n, 1, 30}]  (* Geoffrey Critzer, Feb 10 2013 *) PROG (PARI) a(n) = lcm(vector(n, i, i))/n; \\ Michel Marcus, Apr 16 2014 (Haskell) a002944 n = a003418 n `div` n  -- Reinhard Zumkeller, Mar 16 2015 CROSSREFS Cf. A025527 and A025537. Cf. A100561, A003418, A001142, A001405. - Franklin T. Adams-Watters, Jul 05 2009 Cf. A056606 (squarefree kernel). Sequence in context: A100561 A334721 A081529 * A266366 A201501 A302843 Adjacent sequences:  A002941 A002942 A002943 * A002945 A002946 A002947 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Jud McCranie, Jan 17 2000 Edited by N. J. A. Sloane, Jun 11 2008 and Sep 04 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 6 05:26 EDT 2020. Contains 335475 sequences. (Running on oeis4.)