login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188765
Number of binary strings of length n with no substrings equal to 00000 or 00100.
1
1, 2, 4, 8, 16, 30, 57, 108, 207, 397, 761, 1456, 2784, 5324, 10185, 19488, 37288, 71341, 136486, 261117, 499561, 955756, 1828549, 3498364, 6693021, 12804983, 24498304, 46869822, 89670729, 171556853, 328220258, 627946528, 1201378750, 2298461537, 4397385531, 8413018547, 16095673253, 30794024151, 58914710037, 112714825621, 215644478604, 412568097507, 789319699503, 1510115764260
OFFSET
0,2
COMMENTS
Thanks to Michael Somos for telling me about Mathematica's SatisfiabilityCount command.
Thanks to Doron Zeilberger for telling me about the Noonan-Zeilberger GJs command.
FORMULA
G.f.: (1 + x + x^2 + 2*x^3 + 3*x^4 + 2*x^5 + x^6) / (1 - x - x^2 - x^4 - 2*x^5 - 2*x^6 - x^7).
EXAMPLE
1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4 + 30*x^5 + 57*x^6 + 108*x^7 + 207*x^8 + ...
MAPLE
# First download the Maple package DAVID_IAN from the Zeilberger web site
read(DAVID_IAN);
GJs({0, 1}, {[0, 0, 0, 0, 0], [0, 0, 1, 0, 0]}, x);
MATHEMATICA
a[ n_] := If[ n<0, 0, Length @ Cases[ Tuples[ {0, 1}, n], Except @ {___, 0, 0, _, 0, 0, ___}]] (* Michael Somos, Apr 10 2011 *)
SPAN = 5; MMM = 60;
For[ M=SPAN, M <= MMM, M++,
vlist = Array[x, M];
cl[i_] := Or[ x[i], x[i+1], x[i+3], x[i+4] ];
cl2 = True; For [ i=1, i <= M-SPAN+1, i++, cl2 = And[cl2, cl[i]] ];
R[M] = SatisfiabilityCount[ cl2, vlist ] ]
Table[ R[M], {M, SPAN, MMM}] (* N. J. A. Sloane *)
CoefficientList[Series[(1 + x + x^2 + 2 x^3 + 3 x^4 + 2 x^5 + x^6)/(1 - x - x^2 - x^4 - 2 x^5 - 2 x^6 - x^7), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 09 2012 *)
PROG
(PARI) {a(n) = local(m, k); if( n<0, 0, forvec( v = vector( n, i, [0, 1]), k=0; for( i = 1, n-4, if( [v[i], v[i+1], v[i+3], v[i+4]] == [0, 0, 0, 0], k=1; break)); if( !k, m++)); m)} /* Michael Somos, Apr 09 2011 */
CROSSREFS
Cf. A164387.
Sequence in context: A164184 A164182 A164183 * A164181 A164189 A164185
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 09 2011
STATUS
approved