This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A037960 a(n) = (n+2)!*n*(3*n+1)/24. 7
 0, 1, 14, 150, 1560, 16800, 191520, 2328480, 30240000, 419126400, 6187104000, 97037740800, 1612798387200, 28332944640000, 524813313024000, 10226013557760000, 209144207720448000, 4480594531725312000, 100357207837286400000, 2345925761384325120000, 57136703662028390400000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For n>=1, a(n) is equal to the number of surjections from {1,2,..,n+2} onto {1,2,...,n}. - Aleksandar M. Janjic and Milan Janjic, Feb 24 2007 REFERENCES The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets H. W. Gould, ed. J. Quaintance, Combinatorial Identities, May 2010 (identity 10.3, p.45) FORMULA a(n) = Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j^(n+2). [Vladimir Kruchinin, Jun 01 2013] (3*n-2)*(n-1)*a(n) - n*(n+2)*(3*n+1)*a(n-1) = 0. - R. J. Mathar, Jul 26 2015 E.g.f.: x*(1 + 2*x)/(1 - x)^5. - Ilya Gutkovskiy, Feb 20 2017 MATHEMATICA Table[(n+2)!*n*(3n+1)/24, {n, 0, 20}] (* Harvey P. Dale, Oct 16 2014 *) PROG (PARI) n*(3*n+1)*(n+2)!/24 \\ Charles R Greathouse IV, Nov 02 2011 (MAGMA) [Factorial(n+2)*n*(3*n+1)/24: n in [0..25]]; // Vincenzo Librandi, Feb 20 2017 CROSSREFS Cf. A019538, A001286. Sequence in context: A153598 A180347 A262183 * A222677 A016163 A153884 Adjacent sequences:  A037957 A037958 A037959 * A037961 A037962 A037963 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Vincenzo Librandi, Feb 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 05:11 EST 2019. Contains 319353 sequences. (Running on oeis4.)