login
This site is supported by donations to The OEIS Foundation.

 

Logo

110 people attended OEIS-50 (videos, suggestions); annual fundraising drive to start soon (donate); editors, please edit! (stack is over 300), your editing is more valuable than any donation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001296 4-dimensional pyramidal numbers: (3n+1)*C(n+2,3)/4. Also Stirling2(n+2,n).
(Formerly M4385 N1845)
35
0, 1, 7, 25, 65, 140, 266, 462, 750, 1155, 1705, 2431, 3367, 4550, 6020, 7820, 9996, 12597, 15675, 19285, 23485, 28336, 33902, 40250, 47450, 55575, 64701, 74907, 86275, 98890, 112840, 128216, 145112, 163625, 183855, 205905, 229881, 255892, 284050, 314470 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Permutations avoiding 12-3 that contain the pattern 31-2 exactly once.

Kekule numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005

If Y is a 3-subset of an n-set X then, for n>=6, a(n-5) is the number of 6-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007

Starting with 1 = binomial transform of [1, 6, 12, 10, 3, 0, 0, 0,...]. Equals row sums of triangle A143037. - Gary W. Adamson, Jul 18 2008

Rephrasing the Perry formula of 2003: a(n) is the sum of all products of all two  numbers less than or equal to n, including the squares. Example: for n=3 the sum of these products is 1*1+1*2+1*3+2*2+2*3+3*3=25.- J. M. Bergot, Jul 16 2011

Also the number of (w,x,y,z) with all terms in {1,...,n+1} and w < x >= y > z (see A211795). - Clark Kimberling, May 19 2012

Convolution of A000027 with A000326. - Bruno Berselli, Dec 06 2012

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.

A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.

S. J. Cyvin and I. Gutman, Kekule structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/3).

F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.

M. Griffiths, Remodified Bessel Functions via Coincidences and Near Coincidences, Journal of Integer Sequences, Vol. 14 (2011), Article 11.7.1.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=0..1000

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

L. Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Chanticleer Press, NY, 1950, p. 36.

T. Mansour, Restricted permutations by patterns of type 2-1.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Eric Weisstein's World of Mathematics, Stirling numbers of the 2nd kind.

Index entries for sequences related to linear recurrences with constant coefficients, signature (5,-10,10,-5,1)

FORMULA

a(n) = n*(1+n)*(2+n)*(1+3*n)/24. - T. D. Noe, Jan 21 2008

G.f.: x*(1+2*x)/(1-x)^5. - Paul Barry, Jul 23 2003

a(n) = sum( j=0..n, j*A000217(j) ). - Jon Perry, Jul 28 2003

E.g.f. with offset -1: exp(x)*(1*(x^2)/2! + 4*(x^3)/3! + 3*(x^4)/4!). For the coefficients [1, 4, 3] see triangle A112493.

E.g.f. x*exp(x)*(24 + 60*x + 28*x^2 + 3*x^3)/24 (above e.g.f. differentiated).

Partial sums of A002411. - Jonathan Vos Post, Mar 16 2006

a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4)+3. [Kieren MacMillan, Sep 29 2008]

a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). [Jaume Oliver Lafont, Nov 23 2008]

Half of the partial sums of A011379. [Jolley, Summation of Series, Dover (1961), page 12 eq (66)]

O.g.f. is D^2(x/(1-x)) = D^3(x), where D is the operator x/(1-x)*d/dx. - Peter Bala, Jul 02 2012

a(n) = A153978(n)/2. - J. M. Bergot, Aug 09 2013

a(n) = A000217(n) + A000292(n). - J. M. Bergot, Aug 29 2013

MAPLE

A001296:=-(1+2*z)/(z-1)**5; [Simon Plouffe in his 1992 dissertation for sequence without the leading zero.]

MATHEMATICA

Table[n*(1+n)*(2+n)*(1+3*n)/24, {n, 0, 100}]

CoefficientList[Series[x (1 + 2 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)

PROG

(PARI) t(n)=n*(n+1)/2 for(i=1, 30, print1(", "sum(j=1, i, j*t(j))))

(Sage) [stirling_number2(n+2, n) for n in xrange(0, 38)]# [From Zerinvary Lajos, Mar 14 2009]

(MAGMA) /* A000027 convolved with A000326: */ A000326:=func<n | n*(3*n-1)/2>; [&+[(n-i+1)*A000326(i): i in [0..n]]: n in [0..40]]; // Bruno Berselli, Dec 06 2012

(MAGMA) [(3*n+1)*Binomial(n+2, 3)/4: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014

CROSSREFS

a(n)=f(n, 2) where f is given in A034261.

Cf. A000217, A000326, A001297, A001298, A002411, A008277, A008517, A094262.

a(n)= A093560(n+3, 4), (3, 1)-Pascal column.

Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.

Cf. similar sequences listed in A241765.

Sequence in context: A155305 A155290 A056685 * A000970 A247620 A240156

Adjacent sequences:  A001293 A001294 A001295 * A001297 A001298 A001299

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 31 02:14 EDT 2014. Contains 248845 sequences.