This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A037958 a(n) = binomial(n, floor((n-8)/2)). 2
 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 10, 11, 66, 78, 364, 455, 1820, 2380, 8568, 11628, 38760, 54264, 170544, 245157, 735471, 1081575, 3124550, 4686825, 13123110, 20030010, 54627300, 84672315, 225792840 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 LINKS Robert Israel, Table of n, a(n) for n = 0..3324 FORMULA Conjecture: -(n+9)*(n-8)*a(n) +2*(n)*a(n-1) +4*n*(n-1)*a(n-2)=0. - R. J. Mathar, Jul 26 2015, verified by Robert Israel, Jun 28 2018 From Robert Israel, Jun 28 2018: (Start) E.g.f.: I_8(2*x)+I_9(2*x), where I_k is the modified Bessel function of the first kind and order k. G.f.: 256*x^8/((1+sqrt(1-4*x^2))^8*sqrt(1-4*x^2)) + 512*x^9/((1+sqrt(1-4*x^2))^9*sqrt(1-4*x^2)). (End) MAPLE seq(binomial(n, floor((n-8)/2)), n=0..50); # Robert Israel, Jun 28 2018 MATHEMATICA Table[Binomial[n, Floor[(n-8)/2]], {n, 0, 40}] (* Harvey P. Dale, Jun 11 2013 *) PROG List([0..40], n->Binomial(n, Int((n-8)/2))); # Muniru A Asiru, Jun 29 2018 CROSSREFS Sequence in context: A041212 A257313 A122602 * A041214 A228381 A262229 Adjacent sequences:  A037955 A037956 A037957 * A037959 A037960 A037961 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 19 16:02 EST 2019. Contains 320311 sequences. (Running on oeis4.)