login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002516 Earliest sequence with a(a(n)) = 2n. 12
0, 3, 6, 2, 12, 7, 4, 10, 24, 11, 14, 18, 8, 15, 20, 26, 48, 19, 22, 34, 28, 23, 36, 42, 16, 27, 30, 50, 40, 31, 52, 58, 96, 35, 38, 66, 44, 39, 68, 74, 56, 43, 46, 82, 72, 47, 84, 90, 32, 51, 54, 98, 60, 55, 100, 106, 80, 59, 62, 114, 104, 63, 116, 122, 192, 67, 70, 130 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

R. Stephan, Some divide-and-conquer sequences ...

R. Stephan, Table of generating functions

Index entries for sequences of the a(a(n)) = 2n family

FORMULA

a(4n) = 2*(a(2n)), a(4n+1) = 4n+3, a(4n+2) = 2*(a(2n+1)), a(4n+3) = 8n+2. - Henry Bottomley, Apr 27 2000

From Ralf Stephan, Feb 22 2004: (Start)

a(n) = n + 2*A006519 if odd part of n is of form 4k+1, or 2n - 4*A006519 otherwise.

a(2n) = 2a(n), a(2n+1) = 2n + 3 + (2n - 5)[n mod 2].

G.f.: Sum_{k>=0} 2^k*t(6t^6 + t^4 + 2t^2 + 3)/(1 - t^4)^2, t = x^2^k. (End)

MATHEMATICA

a[0] = 0; a[n_ /; Mod[n, 2] == 0] := a[n] = 2*a[n/2]; a[n_ /; Mod[n, 4] == 1] := n+2; a[n_ /; Mod[n, 4] == 3] := 2(n-2); Table[a[n], {n, 0, 67}] (* Jean-Fran├žois Alcover, Feb 06 2012, after Henry Bottomley *)

PROG

(PARI) v2(n)=valuation(n, 2)

a(n)=2^v2(n)*(-1+3/2*n/2^v2(n)-(-3+1/2*n/2^v2(n))*(-1)^((n/2^v2(n)-1)/2))

(PARI) a(n)=local(t); if(n<1, 0, if(n%2==0, 2*a(n/2), t=(n-1)/2; 3*t+1/2-(t-5/2)*(-1)^t)) \\ Ralf Stephan

(Haskell)

import Data.List (transpose)

a002516 n = a002516_list !! n

a002516_list = 0 : concat (transpose

[a004767_list, f a002516_list, a017089_list, g $ drop 2 a002516_list])

where f [z] = []; f (_:z:zs) = 2 * z : f zs

g [z] = [z]; g (z:_:zs) = 2 * z : g zs

-- Reinhard Zumkeller, Jun 08 2015

CROSSREFS

Cf. A002517, A004767, A007379, A017089, A091067.

Sequence in context: A210035 A210199 A268717 * A073807 A090774 A147995

Adjacent sequences:  A002513 A002514 A002515 * A002517 A002518 A002519

KEYWORD

nonn,nice

AUTHOR

Colin Mallows

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 01:42 EDT 2018. Contains 316431 sequences. (Running on oeis4.)