This site is supported by donations to The OEIS Foundation.

# Index to OEIS: Section Lc

### From OeisWiki

# Index to OEIS: Section Lc

- This is a section of the Index to the
**OEIS®**. - For further information see the main
**Index to OEIS**page. - Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:

[
Aa |
Ab |
Al |
Am |
Ap |
Ar |
Ba |
Be |
Bi |
Bl |
Bo |
Br |
Ca |
Ce |
Ch |
Cl |
Coa |
Coi |
Com |
Con |
Cor |
Cu |
Cy |
Da |
De |
Di |
Do |
Ea |
Ed |
El |
Eu |
Fa |
Fe |
Fi |
Fo |
Fu |
Ga |
Ge |
Go |
Gra |
Gre |
Ha |
He |
Ho |
Ia |
In |
J |
K |
La |
**Lc** |
Li |
Lo |
Lu |
M |
Mag |
Map |
Mat |
Me |
Mo |
Mu |
N |
Na |
Ne |
Ni |
No |
Nu |
O |
Pac |
Par |
Pas |
Pea |
Per |
Ph |
Poi |
Pol |
Pos |
Pow |
Pra |
Pri |
Pro |
Ps |
Qua |
Que |
Ra |
Rea |
Rel |
Res |
Ro |
Ru |
Sa |
Se |
Si |
Sk |
So |
Sp |
Sq |
St |
Su |
Sw |
Ta |
Te |
Th |
To |
Tra |
Tri |
Tu |
U |
V |
Wa |
We |
Wi |
X |
Y |
Z |
1 |
2 |
3 |
4
]

##### LCM , sequences related to :

- LCM of binomial coefficients: A002944
- LCM(x,y): A003990*, A051173*, A000793*, A003418*, A048691*
- LCM: see also A002944, A007463, A006580, A051426, A051193, A048619, A048671, A045948, A025557, A025556, A025527, A025558, A034890, A035105, A049073
- lcm: The canonical spelling for "least common divisor" in the OEIS is LCM (not lcm) (except of course in Maple and PARI lines).
- LCM{1,2,...,n}: A003418*, A002944
- LCM{1,3,5,...,2n+1}: A025547*

least common multiple: see entries under **LCM**

##### least k such that the remainder when X^k is divided by k is n where X = 2..32 , sequences related to :

- least k such that the remainder when X^k is divided by k is n where X = 2..32 (01): A036236, A078457, A119678, A119679, A127816, A119715, A119714, A127817, A127818, A127819, A127820, A127821,
- least k such that the remainder when X^k is divided by k is n where X = 2..32 (02): A128154, A128155, A128156, A128157, A128158, A128159, A128160, A128361, A128362, A128363, A128364, A128365,
- least k such that the remainder when X^k is divided by k is n where X = 2..32 (03): A128366, A128367, A128368, A128369, A128370, A128371, A128372,
- least k such that the remainder when X^k is divided by k is n where X = 2..32 (04): see also: A126762

Least number of powers to represent n:: A002828, A002377, A151925

least significant bit (lsb): A000035

##### Leech , sequences related to :

- Leech lattice, odd: A027859*
- Leech lattice, shorter: A004537*, A029754*
- Leech lattice, theta series of: A008408*
- Leech lattice: see also A001942, A004034, A029754
- Leech triangle: A001293*
- Leech's path-labeling problem: A034470*
- Leech's path-labeling problem: see also Golomb rulers
- Leech's tree-labeling problem: A007187*

left factorials: A003422*

left factorials: see also factorial numbers

##### Legendre , sequences related to :

- Legendre's conjecture: A007491, A014085, A053000, A053001
- Legendre polynomials:: A008316*, A001797, A001798, A001801, A002461, A001796, A001800, A002463, A001802, A001795, A001799, A006750, A002462
- Legendre symbol: A226518, A097343, A226518, A226519

##### LEGO blocks, sequences related to :

Lehmer's constant: A002665*, A030125*, A002794*/A002795*, A002065

Lehmer's polynomial: A070178

Leibniz's triangle: see harmonic triangle of Leibniz

lemniscate function, or Weierstrass P-function: A002306*/A047817*, A002770

Lemoine's conjecture: A046927

length of n in binary: A070939

Length of runs:: A000002, A001250, A001251, A001252, A001253, A000303, A000402, A000434, A000456, A000467, A000517

Leonardo logarithms: A001179

Les Marvin sequence: A007502

##### letters in n , sequences related to :

- letters in n (in English): A005589*, A006944
- letters in n (in other languages) (1): A001050 (Finnish), A001368 (Irish Gaelic), A003078 (Danish), A006968 or A092196 (Roman numerals), A007005 or A006969 (French), A006994 (Russian), A007208 (German), A007292 (Hungarian), A007485 or A090589 (Dutch),
- letters in n (in other languages) (2): A008962 (Polish), A010038 (Czech), A011762 (Spanish), A027684 (Hebrew, dotted), A051785 (Catalan), A026858 (Italian), A056597 (Serbian or Croatian), A057435 (Turkish), A132984 (Latin), A140395 (Hindi),
- letters in n (in other languages) (3): A053306 (Galego), A057696 (Brazilian Portuguese), A057853 (Esperanto), A059124 (Swedish), A030166, A112348, A112349 and A112350 (Chinese), A030166 (Japanese Kanji), A140396 (Welsh), A140438 (Tamil)
- letters in n (in other languages) (4): A014656 (Bokmal), A028292 (Nynorsk), A226446 (Icelandic)
- letters in n : see also
*Sequences related to the***English words for numbers**

Levenshtein distance (1); A010097, A080910, A080950, A081230, A081355, A081356, A081732, A083311, A083381, A091090,

Levenshtein distance (2); A091091, A091092, A091093, A091110, A091111, A097720, A097721, A097722, A106028, A106432,

Levenshtein distance (3); A109378, A109380, A109382, A109809, A109811, A115777, A115778, A115779, A115780, A118757, A118763

Levine's sequence: A011784*

Levy's conjecture: A046927

- This is a section of the Index to the
**OEIS®**. - For further information see the main
**Index to OEIS**page. - Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:

[
Aa |
Ab |
Al |
Am |
Ap |
Ar |
Ba |
Be |
Bi |
Bl |
Bo |
Br |
Ca |
Ce |
Ch |
Cl |
Coa |
Coi |
Com |
Con |
Cor |
Cu |
Cy |
Da |
De |
Di |
Do |
Ea |
Ed |
El |
Eu |
Fa |
Fe |
Fi |
Fo |
Fu |
Ga |
Ge |
Go |
Gra |
Gre |
Ha |
He |
Ho |
Ia |
In |
J |
K |
La |
**Lc** |
Li |
Lo |
Lu |
M |
Mag |
Map |
Mat |
Me |
Mo |
Mu |
N |
Na |
Ne |
Ni |
No |
Nu |
O |
Pac |
Par |
Pas |
Pea |
Per |
Ph |
Poi |
Pol |
Pos |
Pow |
Pra |
Pri |
Pro |
Ps |
Qua |
Que |
Ra |
Rea |
Rel |
Res |
Ro |
Ru |
Sa |
Se |
Si |
Sk |
So |
Sp |
Sq |
St |
Su |
Sw |
Ta |
Te |
Th |
To |
Tra |
Tri |
Tu |
U |
V |
Wa |
We |
Wi |
X |
Y |
Z |
1 |
2 |
3 |
4
]