login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081230
a(n) is the Levenshtein distance between n and n^n (where each is treated as a string).
7
0, 1, 2, 3, 3, 4, 6, 8, 8, 9, 10, 11, 13, 16, 17, 18, 19, 22, 23, 26, 26, 28, 30, 32, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 86, 88, 90, 92, 94, 96, 99, 101, 103, 105, 107, 110, 112, 114, 116, 119, 121, 123, 125
OFFSET
1,3
LINKS
M. Gilleland, Levenshtein Distance. [It has been suggested that this algorithm gives incorrect results sometimes. - N. J. A. Sloane]
EXAMPLE
a(9)=8 since we can transform 9 into 9^9=387420489 by 8 insertions, namely inserting 3,8,7,4,2,0,4 and 8 in front of 9. a(2)=1 since we can transform 2 into 2^2=4 by one substitution, namely 4 for 2.
MATHEMATICA
levenshtein[s_List, t_List] := Module[{d, n = Length@s, m = Length@t}, Which[s === t, 0, n == 0, m, m == 0, n, s != t, d = Table[0, {m + 1}, {n + 1}]; d[[1, Range[n + 1]]] = Range[0, n]; d[[Range[m + 1], 1]] = Range[0, m]; Do[ d[[j + 1, i + 1]] = Min[d[[j, i + 1]] + 1, d[[j + 1, i]] + 1, d[[j, i]] + If[ s[[i]] === t[[j]], 0, 1]], {j, m}, {i, n}]; d[[ -1, -1]] ]];
f[n_] := levenshtein[IntegerDigits[n], IntegerDigits[n^n]]; Array[f, 69] (* Robert G. Wilson v *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Francois Jooste (pin(AT)myway.com), Mar 11 2003
EXTENSIONS
Corrected by Robert G. Wilson v, Jan 25 2006
STATUS
approved