This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081232 Let p = n-th prime of the form 4k+1, take smallest solution (x,y) to the Pellian equation x^2 - p*y^2 = 1 with x and y >= 1; sequence gives value of x. 4
 9, 649, 33, 9801, 73, 2049, 66249, 1766319049, 2281249, 500001, 62809633, 201, 158070671986249, 1204353, 6083073, 25801741449, 46698728731849, 2499849, 2469645423824185801, 6224323426849, 393, 5848201, 1072400673 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..2000 N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references) EXAMPLE For n = 1, p = 5, x=9, y=4 since 9^2 = 5*4^2 + 1, so a(1) = 9. MATHEMATICA PellSolve[(m_Integer)?Positive] := Module[{cof, n, s}, cof = ContinuedFraction[Sqrt[m]]; n = Length[Last[cof]]; If[ OddQ[n], n = 2*n]; s = FromContinuedFraction[ContinuedFraction[Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; First /@ PellSolve /@ Select[Prime@Range@54, Mod[ #, 4] == 1 &] (* Robert G. Wilson v *) CROSSREFS Values of y are in A082393. Cf. A082394, A081233. Equals A002350(p). Sequence in context: A210053 A128795 A191510 * A020548 A091062 A221133 Adjacent sequences:  A081229 A081230 A081231 * A081233 A081234 A081235 KEYWORD easy,nonn AUTHOR N. J. A. Sloane, Apr 18, 2003 EXTENSIONS More terms from Robert G. Wilson v, Feb 28 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.