This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008316 Triangle of coefficients of Legendre polynomials P_n (x). 9
 1, 1, -1, 3, -3, 5, 3, -30, 35, 15, -70, 63, -5, 105, -315, 231, -35, 315, -693, 429, 35, -1260, 6930, -12012, 6435, 315, -4620, 18018, -25740, 12155, -63, 3465, -30030, 90090, -109395, 46189, -693, 15015, -90090, 218790, -230945, 88179, 231, -18018, 225225, -1021020, 2078505, -1939938, 676039 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798. LINKS T. D. Noe, Rows n=0..100 of triangle, flattened M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. T. Copeland, The Elliptic Lie Triad: Riccati and KdV Equations, Infinigens, and Elliptic Genera, see the Additional Notes section, 2015. Eric Weisstein's World of Mathematics, Legendre Polynomial EXAMPLE Triangle starts: 1; 1; -1,3; -3,5; 3,-30,35; 15,-70,63; ... P_5(x) = (15*x - 70*x^3 + 63*x^5)/8 so T(5, ) = (15, -70, 63). P_6(x) = (-5 + 105*x^2 - 315*x^4 + 231*x^6)/16 so T(6, ) = (-5, 105, -315, 231). - Michael Somos, Oct 24 2002 MATHEMATICA Flatten[Table[(LegendreP[i, x]/.{Plus->List, x->1})Max[ Denominator[LegendreP[i, x]/.{Plus->List, x->1}]], {i, 0, 12}]] PROG (PARI) {T(n, k) = if( n<0, 0, polcoeff( pollegendre(n) * 2^valuation( (n\2*2)!, 2), n%2 + 2*k))}; /* Michael Somos, Oct 24 2002 */ (Python) from mpmath import * mp.dps=20 def a007814(n): return 1 + bin(n - 1)[2:].count('1') - bin(n)[2:].count('1') for n in range(11):     y=2**(a007814(int(fac(n))))     l=(chop(taylor(lambda x: legendre(n, x), 0, n))) print list(filter(lambda i: i!=0, [int(i*y) for i in l])) # Indranil Ghosh, Jul 02 2017 CROSSREFS Cf. A001790, A001800, A001801. With zeros: A100258. Cf. A121448. Sequence in context: A094439 A122037 A201454 * A290284 A258802 A072820 Adjacent sequences:  A008313 A008314 A008315 * A008317 A008318 A008319 KEYWORD sign,tabf,easy,nice AUTHOR EXTENSIONS More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 28 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.