This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008314 Irregular triangle read by rows: one half of the coefficients of the expansion of (2*x)^n in terms of Chebyshev T-polynomials. 5
 1, 1, 1, 1, 1, 3, 1, 4, 3, 1, 5, 10, 1, 6, 15, 10, 1, 7, 21, 35, 1, 8, 28, 56, 35, 1, 9, 36, 84, 126, 1, 10, 45, 120, 210, 126, 1, 11, 55, 165, 330, 462, 1, 12, 66, 220, 495, 792, 462, 1, 13, 78, 286, 715, 1287, 1716, 1, 14, 91, 364, 1001, 2002, 3003, 1716, 1, 15, 105, 455, 1365, 3003, 5005 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS The entry a(0,0) should actually be 1/2. The row lengths of this array are [1,1,2,2,3,3,...] = A004526. Row k also counts the binary strings of length k that have 0, 2 up to 2*floor(k/2) 'unmatched symbols'. See contributions by Marc van Leeuwen in Math StackExchange link. - Wouter Meeussen, Apr 17 2013 For n >= 1, T(n,k) is the coefficient of cos((n-2k)x) in the expression for 2^(n-1)*cos(x)^n as a sum of cosines of multiples of x.  It is binomial(n,k) if k < n/2, while T(n,n/2) = binomial(n,n/2)/2 if n is even. - Robert Israel, Jul 25 2016 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795. T. J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2nd ed., Wiley, New York, 1990, pp. 54-55, Ex. 1.5.31. LINKS Robert Israel, Table of n, a(n) for n = 0..10099 (rows 0 to 199, flattened) M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Suyoung Choi and Hanchul Park, A new graph invariant arises in toric topology, arXiv preprint arXiv:1210.3776 [math.AT], 2012. Math StackExchange, Bijection between number of partitions of 2n satisfying certain conditions with number of partitions of n, April-March 2013. FORMULA a(n,k) are the M_3 multinomial numbers A036040 for the partitions with m = 1 and 2 parts (in Abramowitz-Stegun order). - Wolfdieter Lang, Aug 01 2014 EXAMPLE [1/2], , [1,2/2=1], [1,3], [1,4,6/2=3], [1,5,10], [1,6,15,20/2=10],... From Wolfdieter Lang, Aug 01 2014: (Start) This irregular triangle begins (even n has falling even T-polynomial indices, odd n has falling odd T-indices): n\k  1  2   3   4     5     6     7     8 ... 0: 1/2 (but a(0,1) = 1) 1:   1 2:   1  1 3:   1  3 4:   1  4   3 5:   1  5  10 6:   1  6  15  10 7:   1  7  21  35 8:   1  8  28  56    35 9:   1  9  36  84   126 10:  1 10  45 120   210   126 11:  1 11  55 165   330   462 12:  1 12  66 220   495   792   462 13:  1 13  78 286   715  1287  1716 14:  1 14  91 364  1001  2002  3003  1716 15:  1 15 105 455  1365  3003  5005  6435 ... (2*x)^5 = 2*(1*T_5(x) + 5*T_3(x) + 10*T_1(x)), (2*x)^6 = 2*(1*T_6(x) + 6*T_4(x) + 15*T_3(x) + 10*T_0(x)). (End) MAPLE F:= proc(n) local q;   q:= combine(2^(n-1)*cos(t)^n, trig);   if n::even then      seq(coeff(q, cos((n-2*j)*t)), j=0..n/2-1), eval(q, cos=0)   else      seq(coeff(q, cos((n-2*j)*t)), j=0..(n-1)/2)   fi end proc: 1, seq(F(n), n=1..15); # Robert Israel, Jul 25 2016 MATHEMATICA Table[(c/@ Range[n, 0, -2]) /. Flatten[Solve[Thread[CoefficientList[Expand[1/2*(2*x)^n -Sum[c[k] ChebyshevT[k, x], {k, 0, n}]], x]==0]]], {n, 16}]; (* or with combinatorics *) match[li:{(1|-1)..}]:= Block[{it=li, rot=0}, While[Length[Union[Join[it, {"(", ")"}]]]>3, rot++; it=RotateRight[it //.{a___, 1, b___String, -1, c___} ->{a, "(", b, ")", c}]]; RotateLeft[it, rot] /. {(1|-1)->0, "("->1, ")"->-1}]; Table[Last/@ Sort@ Tally[Table[Tr[Abs@ match[-1+2*IntegerDigits[n, 2]]], {n, 2^(k-1), 2^k-1}]], {k, 1, 16}]; (* Wouter Meeussen, Apr 17 2013 *) CROSSREFS Cf. A007318, A008311. Bisection triangles: A122366 (odd numbered rows), A127673 (even numbered rows). Sequence in context: A101038 A064883 A090844 * A104568 A030758 A322103 Adjacent sequences:  A008311 A008312 A008313 * A008315 A008316 A008317 KEYWORD nonn,tabf,changed AUTHOR EXTENSIONS Name reformulated by Wolfdieter Lang, Aug 01 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 14 15:24 EST 2019. Contains 329126 sequences. (Running on oeis4.)