OFFSET
0,5
COMMENTS
This triangle is the right half of Pascal's triangle (A007318), but with each number along the center of Pascal's triangle (except the 1 at the top) divided by 2. - Benjamin Schak (schak(AT)math.upenn.edu), Dec 02 2005
For n>=2 found in A002378, a(n)=A034869(n)/2, for all others a(n)=A034869(n). - R. J. Mathar, May 13 2006
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..5775
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
H. J. Brothers, Pascal's Prism: Supplementary Material.
FORMULA
Sum_{k, 0<=k}T(n,k)*cos(kx) = 2^(n-1)*cos(x)^n. - Philippe Deléham, Mar 09 2013
EXAMPLE
Triangle begins:
1;
-, 1;
1, -, 1;
-, 3, -, 1;
3, -, 4, -, 1;
-, 10, -, 5, -, 1;
...
From Philippe Deléham, Mar 09 2013: (Start)
cos(x) = 1*cos(x),
2*cos(x)^2 = 1 + cos(2x),
4*cos(x)^3 = 3*cos(x) + cos(3x),
8*cos(x)^4 = 3 + 4*cos(2x) + cos(4x),
16*cos(x)^5 = 10*cos(x) + 5*cos(3x) + cos(5x), etc. (End)
MAPLE
printf("1, ") ; for n from 1 to 20 do for j from n mod 2 to n by 2 do if j = 0 then printf("%d, ", binomial(n, (n-j)/2)/2) ; else printf("%d, ", binomial(n, (n-j)/2)) ; fi ; od ; od ; # R. J. Mathar, May 13 2006
MATHEMATICA
row[n_] := If[n == 0, {1}, Table[If[j == 0, Binomial[n, (n - j)/2]/2, Binomial[n, (n - j)/2]], {j, Mod[n, 2], n, 2}]];
Table[row[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 05 2017, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
EXTENSIONS
Corrected by Philippe Deléham, Nov 12 2005
More terms from R. J. Mathar, May 13 2006
STATUS
approved