login
A008311
Triangle of expansions of powers of x in terms of Chebyshev polynomials T_n (x).
5
1, 1, 1, 1, 3, 1, 3, 4, 1, 10, 5, 1, 10, 15, 6, 1, 35, 21, 7, 1, 35, 56, 28, 8, 1, 126, 84, 36, 9, 1, 126, 210, 120, 45, 10, 1, 462, 330, 165, 55, 11, 1, 462, 792, 495, 220, 66, 12, 1, 1716, 1287, 715, 286, 78, 13, 1, 1716, 3003, 2002, 1001, 364, 91, 14, 1, 6435, 5005, 3003
OFFSET
0,5
COMMENTS
This triangle is the right half of Pascal's triangle (A007318), but with each number along the center of Pascal's triangle (except the 1 at the top) divided by 2. - Benjamin Schak (schak(AT)math.upenn.edu), Dec 02 2005
For n>=2 found in A002378, a(n)=A034869(n)/2, for all others a(n)=A034869(n). - R. J. Mathar, May 13 2006
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
Sum_{k, 0<=k}T(n,k)*cos(kx) = 2^(n-1)*cos(x)^n. - Philippe Deléham, Mar 09 2013
EXAMPLE
Triangle begins:
1;
-, 1;
1, -, 1;
-, 3, -, 1;
3, -, 4, -, 1;
-, 10, -, 5, -, 1;
...
From Philippe Deléham, Mar 09 2013: (Start)
cos(x) = 1*cos(x),
2*cos(x)^2 = 1 + cos(2x),
4*cos(x)^3 = 3*cos(x) + cos(3x),
8*cos(x)^4 = 3 + 4*cos(2x) + cos(4x),
16*cos(x)^5 = 10*cos(x) + 5*cos(3x) + cos(5x), etc. (End)
MAPLE
printf("1, ") ; for n from 1 to 20 do for j from n mod 2 to n by 2 do if j = 0 then printf("%d, ", binomial(n, (n-j)/2)/2) ; else printf("%d, ", binomial(n, (n-j)/2)) ; fi ; od ; od ; # R. J. Mathar, May 13 2006
MATHEMATICA
row[n_] := If[n == 0, {1}, Table[If[j == 0, Binomial[n, (n - j)/2]/2, Binomial[n, (n - j)/2]], {j, Mod[n, 2], n, 2}]];
Table[row[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 05 2017, after R. J. Mathar *)
CROSSREFS
With zeros: A100257.
Sequence in context: A093560 A173934 A131504 * A175721 A337936 A296388
KEYWORD
nonn,tabf,easy
EXTENSIONS
Corrected by Philippe Deléham, Nov 12 2005
More terms from R. J. Mathar, May 13 2006
STATUS
approved