login
Triangle of coefficients of Legendre polynomials P_n (x).
29

%I #39 Dec 16 2021 22:32:45

%S 1,1,-1,3,-3,5,3,-30,35,15,-70,63,-5,105,-315,231,-35,315,-693,429,35,

%T -1260,6930,-12012,6435,315,-4620,18018,-25740,12155,-63,3465,-30030,

%U 90090,-109395,46189,-693,15015,-90090,218790,-230945,88179,231,-18018,225225,-1021020,2078505,-1939938,676039

%N Triangle of coefficients of Legendre polynomials P_n (x).

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.

%H T. D. Noe, <a href="/A008316/b008316.txt">Rows n=0..100 of triangle, flattened</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H T. Copeland, <a href="http://tcjpn.wordpress.com/2015/10/12/the-elliptic-lie-triad-kdv-and-ricattt-equations-infinigens-and-elliptic-genera/">The Elliptic Lie Triad: Riccati and KdV Equations, Infinigens, and Elliptic Genera</a>, see the Additional Notes section, 2015.

%H H. N. Laden, <a href="https://drum.lib.umd.edu/handle/1903/16857">An historical, and critical development of the theory of Legendre polynomials before 1900</a>, Master of Arts Thesis, University of Maryland 1938.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LegendrePolynomial.html">Legendre Polynomial</a>

%e Triangle starts:

%e 1;

%e 1;

%e -1, 3;

%e -3, 5;

%e 3, -30, 35;

%e 15, -70, 63;

%e ...

%e P_5(x) = (15*x - 70*x^3 + 63*x^5)/8 so T(5, ) = (15, -70, 63). P_6(x) = (-5 + 105*x^2 - 315*x^4 + 231*x^6)/16 so T(6, ) = (-5, 105, -315, 231). - _Michael Somos_, Oct 24 2002

%t Flatten[Table[(LegendreP[i, x]/.{Plus->List, x->1})Max[ Denominator[LegendreP[i, x]/.{Plus->List, x->1}]], {i, 0, 12}]]

%o (PARI) {T(n, k) = if( n<0, 0, polcoeff( pollegendre(n) * 2^valuation( (n\2*2)!, 2), n%2 + 2*k))}; /* _Michael Somos_, Oct 24 2002 */

%Y Cf. A001790, A001800, A001801.

%Y With zeros: A100258.

%Y Cf. A121448.

%K sign,tabf,easy,nice

%O 0,4

%A _N. J. A. Sloane_

%E More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 28 2002