

A008318


Smallest number strictly greater than previous one which is the sum of squares of two previous distinct terms (a(1)=1, a(2)=2).


5



1, 2, 5, 26, 29, 677, 680, 701, 842, 845, 866, 1517, 458330, 458333, 458354, 459005, 459170, 462401, 462404, 462425, 463076, 463241, 491402, 491405, 491426, 492077, 492242, 708965, 708968, 708989, 709640, 709805, 714026, 714029, 714050, 714701
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A003095 is a subsequence apart from the initial term.  Reinhard Zumkeller, Jan 17 2008
The subsequence of primes begins: 2, 5, 29, 677, 701, 458333, 462401, 492077, 708989, 714029, ...  Jonathan Vos Post, Nov 21 2012


REFERENCES

F. Smarandache, Definitions solved and unsolved problems, conjectures and theorems in number theory and geometry, edited by M. Perez, Xiquan Publishing House 2000
F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006.


LINKS

T. D. Noe, Table of n, a(n) for n=1..1000
Mihaly Bencze [Beneze], Smarandache Recurrence Type Sequences, in Bull. Pure Appl. Sciences, Vol. 16E, No. 2, 231236, 1997.
F. Smarandache, Definitions, Solved and Unsolved Problems, Conjectures, ...
F. Smarandache, Sequences of Numbers Involved in Unsolved Problems.
Eric Weisstein's World of Mathematics, Smarandache Sequences.


MATHEMATICA

a[1]=1; a[2]=2; a[n_] := a[n] = First[ Select[ Sort[ Flatten[ Table[a[j]^2 + a[k]^2, {j, 1, n1}, {k, j+1, n1}]]], # > a[n1] & , 1]]; Table[a[n], {n, 1, 36}](* JeanFrançois Alcover, Nov 10 2011 *)


PROG

(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a008318 n = a008318_list !! (n1)
a008318_list = f [1] (singleton 1) where
f xs s =
m : f (m:xs) (foldl (flip insert) s' (map (+ m^2) (map (^ 2) xs)))
where (m, s') = deleteFindMin s
 Reinhard Zumkeller, Aug 15 2011


CROSSREFS

Cf. A192476.
Sequence in context: A191951 A120767 A051771 * A204275 A160048 A019047
Adjacent sequences: A008315 A008316 A008317 * A008319 A008320 A008321


KEYWORD

nonn,easy,nice


AUTHOR

R. Muller


EXTENSIONS

More terms from David W. Wilson


STATUS

approved



