The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047817 Denominators of Hurwitz numbers H_n (coefficients in expansion of Weierstrass P-function). 4
10, 10, 130, 170, 10, 130, 290, 170, 4810, 410, 10, 2210, 530, 290, 7930, 170, 10, 351130, 10, 6970, 3770, 890, 10, 214370, 1010, 530, 524290, 557090, 10, 325130, 10, 170, 130, 1370, 290, 5969210, 1490, 10, 1081730, 6970, 10, 3770 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Hurwitz showed (see Katz, eqn. 9) that a(n) = product of the prime p = 2 and the primes p of the form 4*k + 1 such that p - 1 divides 4*n. It follows that a(n) is a divisibility sequence, that is, if n | m then a(n) | a(m). - Peter Bala, Jan 08 2014
REFERENCES
F. Lemmermeyer, Reciprocity Laws, Springer-Verlag, 2000; see p. 276.
LINKS
L. Carlitz, The coefficients of the lemniscate function, Math. Comp., 16 (1962), 475-478.
A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Math. Ann., 51 (1899), 196-226; Mathematische Werke. Vols. 1 and 2, Birkhäuser, Basel, 1962-1963, see Vol. 2, No. LXVII.
A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Math. Ann., 51 (1899), 196-226; Mathematische Werke. Vols. 1 and 2, Birkhäuser, Basel, 1962-1963, see Vol. 2, No. LXVII. [Annotated scanned copy]
FORMULA
Let P be the Weierstrass P-function satisfying P'^2 = 4*P^3 - 4*P. Then P(z) = 1/z^2 + Sum_{n>=1} 2^(4n)*H_n*z^(4n-2)/(4n*(4n-2)!).
Sum_{ (r, s) != (0, 0) } 1/(r+si)^(4n) = (2w)^(4n)*H_n/(4n)! where w = 2 * Integral_{0..1} dx/(sqrt(1-x^4)).
See PARI line for recurrence.
EXAMPLE
Hurwitz numbers H_1, H_2, ... = 1/10, 3/10, 567/130, 43659/170, 392931/10, ...
MAPLE
H := proc(n) local k; option remember; if n = 1 then 1/10 else 3*add((4*k - 1)*(4*n - 4*k - 1)*binomial(4*n, 4*k)*H(k)*H(n - k), k = 1 .. n - 1)/( (2*n - 3)*(16*n^2 - 1)) fi; end;
a := n -> denom(H(n));
# Implementation based on Hurwitz's extension of Clausen's theorem:
GenClausen := proc(n) local k, S; map(k->k+1, numtheory[divisors](n));
S := select(p-> isprime(p) and p mod 4 = 1, %);
if S <> {} then 2*mul(k, k=S) else NULL fi end:
A047817_list := proc(n) local i; seq(GenClausen(i), i=1..4*n) end;
A047817_list(42); # Peter Luschny, Oct 03 2011
# Implementation based on Weierstrass's P-function:
c := n -> (n*(4*n-2)!/(2^(4*n-2)))*coeff(series(WeierstrassP(z, 4, 0), z, 4*n+2), z, 4*n-2); a := n -> denom(c(n)); seq(a(n), n=1..42); # Peter Luschny, Aug 18 2014
MATHEMATICA
a[1] = 1/10; a[n_] := a[n] = (3/(2*n - 3)/(16*n^2 - 1))* Sum[(4*k - 1)*(4*n - 4*k - 1)*Binomial[4*n, 4*k]*a[k]* a[n - k], {k, 1, n - 1}]; Denominator[ Table[a[n], {n, 1, 42}]] (* Jean-François Alcover, Oct 18 2011, after PARI *)
a[ n_] := If[ n < 1, 0, Denominator[ 2^(-4 n) (4 n)! SeriesCoefficient[ 1 - x WeierstrassZeta[ x, {4, 0}], {x, 0, 4 n}]]]; (* Michael Somos, Mar 05 2015 *)
PROG
(PARI) do(lim)=v=vector(lim); v[1]=1/10; for(n=2, lim, v[n]=3/(2*n-3)/(16*n^2-1)*sum(k=1, n-1, (4*k-1)*(4*n-4*k-1)*binomial(4*n, 4*k)*v[k]*v[n-k])) \\ Henri Cohen, Mar 18 2002
CROSSREFS
For numerators see A002306.
Cf. A160014.
Sequence in context: A285608 A285612 A287600 * A065243 A105750 A220449
KEYWORD
nonn,easy,nice,frac
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 08:41 EDT 2024. Contains 372552 sequences. (Running on oeis4.)