login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160014 Generalized Clausen numbers (table read by antidiagonals.) 17
1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 2, 2, 3, 1, 1, 5, 30, 15, 5, 5, 1, 6, 2, 3, 1, 5, 1, 1, 7, 42, 21, 35, 35, 7, 7, 1, 2, 2, 15, 1, 5, 1, 7, 1, 1, 3, 30, 3, 5, 5, 7, 7, 1, 1, 1, 10, 2, 3, 1, 35, 1, 7, 1, 1, 1, 1, 11, 66, 165, 385, 55, 77, 77, 11, 11, 11, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

T(n,k) = Product_{ p - k | n} p, where p is prime.

T(n,0) is the squarefree kernel of n (A007947).

T(n,1) are the classical Clausen numbers (A141056). The classical Clausen numbers are by the von Staudt-Clausen theorem the denominators of the Bernoulli numbers.

REFERENCES

Clausen, Thomas, "Lehrsatz aus einer Abhandlung ueber die Bernoullischen Zahlen", Astr. Nachr. 17 (1840), 351-352.

LINKS

Charles R Greathouse IV, Rows n = 0..100, flattened

A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Math. Ann., 51 (1899), 196-226; Mathematische Werke. Vols. 1 and 2, Birkhaeuser, Basel, 1962-1963, see Vol. 2, No. LXVII.

Peter Luschny, Generalized Bernoulli numbers.

EXAMPLE

[k\n][0--1--2---3---4---5---6---7----8----9---10---11----12---13---14----15]

[0]...1..1..2...3...2...5...6...7....2....3...10...11.....6...13...14....15

[1]...1..2..6...2..30...2..42...2...30....2...66....2..2730....2....6.....2

[2]...1..3..3..15...3..21..15...3....3..165...21...39....15....3....3..1785

[3]...1..1..5...1..35...1...5...1..385....1...65....1....35....1...85.....1

[4]...1..5..5..35...5...5..35..55....5..455....5....5....35...85...55...665

[5]...1..1..7...1...7...1..77...1...91....1....7....1..1309....1..133.....1

T(3,4) = 35 = 5*7 because 5 and 7 are the only prime numbers p such that

(p - 4) divides 3.

MAPLE

Clausen := proc(n, k) local S, i;

S := numtheory[divisors](n);

S := map(i->i+k, S);

S := select(isprime, S);

mul(i, i=S) end:

MATHEMATICA

t[0, _] = 1; t[n_, k_] := Times @@ (Select[Divisors[n], PrimeQ[# + k] &] + k); Table[t[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)

PROG

(Sage)

def Clausen(n, k):

    if k == 0: return 1

    return mul(filter(lambda s: is_prime(s), map(lambda i: i+n, divisors(k))))

for n in (0..5): [Clausen(n, k) for k in (0..15)]   # Peter Luschny, Jun 05 2013

(PARI) T(n, k)=if(n, my(s=1); fordiv(n, d, if(isprime(d+k), s*=d+k)); s, 1)

for(s=0, 9, for(k=0, s, print1(T(s-k, k)", "))) \\ Charles R Greathouse IV, Jun 26 2013

CROSSREFS

Cf. A007947, A141056, A027760, A027642.

Sequence in context: A080955 A125231 A117919 * A068956 A124842 A134399

Adjacent sequences:  A160011 A160012 A160013 * A160015 A160016 A160017

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, Apr 29 2009

EXTENSIONS

Swapped n<>k fixed by Peter Luschny, May 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 27 10:45 EDT 2017. Contains 285512 sequences.