login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115778
Consider the Levenshtein distance between k considered as a decimal string and k considered as a binary string. Then a(n) is the least number m such that the Levenshtein distance is n or 0 if no such number exists.
3
1, 0, 2, 4, 8, 22, 32, 64, 222, 256, 512, 2044, 2222, 4222, 8192, 22222, 32768, 65536, 222222, 262144, 524288, 2097152, 2222222, 4194322, 8388622, 22222222, 33554432, 67222222, 222222222, 268435456, 536872222, 2147483650, 2147483648, 4294967296, 8589934592, 22222222222
OFFSET
0,3
COMMENTS
Difference between A115779 and A115778: 1, 0, 9, 11, 103, 99, 979, 1047, 1789, 10855, 15599, 109067, 128789, 1006889, 1102919, 1988889, 11078343, ...,.
FORMULA
a(1)=0 since no number satisfies the definition and generally a(n)>= 2^(n+1).
MAPLE
f:= n -> StringTools:-Levenshtein(convert(n, string), convert(convert(n, binary), string)):
A:= Vector(20):
for n from 3 to 10^6 do
v:= f(n);
if A[v] = 0 then A[v]:= n fi
od:
1, 0, seq(A[n], n=2..20); # Robert Israel, Jul 16 2015
MATHEMATICA
levenshtein[s_List, t_List] := Module[{d, n = Length@s, m = Length@t}, Which[s === t, 0, n == 0, m, m == 0, n, s != t, d = Table[0, {m + 1}, {n + 1}]; d[[1, Range[n + 1]]] = Range[0, n]; d[[Range[m + 1], 1]] = Range[0, m]; Do[d[[j + 1, i + 1]] = Min[d[[j, i + 1]] + 1, d[[j + 1, i]] + 1, d[[j, i]] + If[s[[i]] === t[[j]], 0, 1]], {j, m}, {i, n}]; d[[ -1, -1]]]];
t = Table[0, {25}]; f[n_] := levenshtein[ IntegerDigits[n], IntegerDigits[n, 2]]; Do[a = f[n]; If[ t[[a+1]] == 0, t[[a+1]] = n; Print[{a, n}]], {n, 10^6}]; t
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Robert G. Wilson v, Jan 26 2006
EXTENSIONS
a(26)-a(35) from Lars Blomberg, Jul 16 2015
STATUS
approved