login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025527 a(n) = n!/LCM{1,2,...,n} = (n-1)!/LCM{C(n-1,0),C(n-1,1),...,C(n-1,n-1)}. 18
1, 1, 1, 2, 2, 12, 12, 48, 144, 1440, 1440, 17280, 17280, 241920, 3628800, 29030400, 29030400, 522547200, 522547200, 10450944000, 219469824000, 4828336128000, 4828336128000, 115880067072000, 579400335360000, 15064408719360000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

a(n) = a(n-1) iff n is prime. Thus a(1)=a(2)=a(3)=1 is the only triple in this sequence. - Franz Vrabec, Sep 10 2005

a(k) = a(k+1) for k in A006093. - Lekraj Beedassy, Aug 03 2006

Partial products of A048671. - Peter Luschny, Sep 09 2009

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..500

Liam Solus, Simplices for Numeral Systems, arXiv:1706.00480 [math.CO], 2017. Mentions this sequence.

Index entries for sequences related to lcm's

FORMULA

a(n) = A000142(n)/A003418(n) = A000254(n)/A025529(n). - Franz Vrabec, Sep 13 2005

log a(n) = n log n - 2n + O(n/log^4 n). (The error term can be improved. On the Riemann Hypothesis it is O(n^k) for any k > 1/2.) - Charles R Greathouse IV, Oct 16 2012

a(n) = A205957(n), 1 <= n <= 11. - Daniel Forgues, Apr 22 2014

Conjecture: a(A006093(n)) = phi(A000142(A006093(n))) / phi(A003418(A006093(n))), where phi is the Euler totient function. - Fred Daniel Kline, Jun 03 2017

EXAMPLE

a(5) = 2 as 5!/LCM(1..5) = 120/60 = 2.

MAPLE

seq(n!/lcm($1..n), n=1..30);

A025527 := proc(n) option remember; `if`(n < 3, 1, ilcm(op(numtheory[divisors](n) minus{1, n}))*A025527(n-1)) end:

seq(A025527(i), i=1..26); # Peter Luschny, Mar 23 2011

MATHEMATICA

Table[n!/Apply[LCM, Range[n]], {n, 1, 26}] (* Geoffrey Critzer, Jun 17 2013 *)

PROG

(Sage)

def A025527(n) :

    if n < 2 : return 1

    else :

        D = divisors(n); D.pop()

    return lcm(D)*A025527(n-1)

[A025527(i) for i in (1..26)] # Peter Luschny, Feb 03 2012

(PARI) a(n)=n!/lcm([2..n]) \\ Charles R Greathouse IV, Mar 06 2014

CROSSREFS

Cf. A000142, A002541, A006093, A003418, A048671, A025529, A205957.

Sequence in context: A131121 A232853 A055772 * A205957 A092144 A224497

Adjacent sequences:  A025524 A025525 A025526 * A025528 A025529 A025530

KEYWORD

nonn

AUTHOR

Clark Kimberling, Dec 11 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 06:31 EST 2017. Contains 294989 sequences.