OFFSET
1,2
COMMENTS
a(n) = (1/1 + 1/3 + 1/6 + ... + 1/C(n+1,2))*lcm(1,3,6,...,binomial(n+1,2)) = 2n/(n+1) * lcm(1,3,6,...,binomial(n+1,2)).
a(n+1) = a(n) * ((n+1)^2)/(n * ((n+2)/p) ), where p = n+2 if n+2 is prime, p = q if n+2 = q^k (q is prime, k>1), or p = 1 if n+2 is not a prime or a prime power. - Scott C. Macfarlan (scottmacfarlan(AT)covance.com), Jan 08 2004
MAPLE
a:= n-> (n/(n+1)) * ilcm($1..n+1):
seq(a(n), n=1..29); # Alois P. Heinz, Mar 07 2022
MATHEMATICA
Table[n/(n+1) LCM@@Range[n+1], {n, 30}] (* Harvey P. Dale, Apr 02 2011 *)
PROG
(PARI) a(n) = n*lcm([1..n+1])/(n+1); \\ Michel Marcus, Mar 07 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Nov 12 2004
STATUS
approved