This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Ge

From OeisWiki

Jump to: navigation, search

Index to OEIS: Section Ge


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


generalized Fermat primes: see primes, Fermat, generalized
generalized Fermat primes: see primes, generalized Fermat
generated by substitutions:: A001030, A007001, A006697, A006977, A006978

generating functions , sequences related to :
generating functions of the form (1+x)/(1-kx) for k=1 to 12: A040000, A003945, A003946, A003947, A003948, A003949, A003950, A003951, A003952
generating functions of the form (1+x)/(1-kx) for k=13 to 30: A170732, A170733, A170734, A170735, A170736, A170737, A170738, A170739, A170740, A170741, A170742, A170743, A170744, A170745, A170746, A170747, A170748
generating functions of the form (1+x)/(1-kx) for k=31 to 50: A170749, A170750, A170751, A170752, A170753, A170754, A170755, A170756, A170757, A170758, A170759, A170760, A170761, A170762, A170763, A170764, A170765, A170766, A170767, A170768, A170769
generating functions of the form 1/(1-kx+x^2) or x/(1-kx+x^2): A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362, A007655, A078364, A077412, A078366, etc.
generating functions of the form Prod_{k>=0} (1+a*x^(b^k)) for the following values of (a,b): (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674
generating functions of the form Prod_{k>=c} (1+a*x^(2^k-1)+b*x^2^k)) for the following values of (a,b,c): (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694
generating functions, rational: see recurrences, linear
generating functions satisfying a cubic: A001764, A007863, A036759, A036765, A078531, A088927, A067955, A102403, A120984, A120985, A128725, A128729, A128736
generating functions satisfying equations of the form A(x)=1+zA(x)^k: A002293-A002296, A007556, A062994, A062744
generating functions satisfying equations of the form r*A(x) = c + b*x + A(x)^n: A120588 - A120607
generating functions, for definition see Wikipedia article

Genocchi medians: A005439
Genocchi numbers , sequences related to :

Genocchi numbers: A001469*, A036968
Genocchi numbers: see also A002317

genus , sequences related to :

genus, of modular group, A001617, A001767
genus-1:: A006387, A006386, A006295, A006297, A006296
genus:: A003639, A003638, A000933, A003636, A003637, A003171, A003644, A005527, A000934, A005431, A005525, A005526, A006298, A006299, A006301

geometrical configurations: see configurations
geometric sequences: see recurrences, linear, order 01
geometries , sequences related to :

geometries : A002773*, A004069, A031501
geometries, linear: A001200*, A001548* (connected), A005426
geometries: see also matroids

Germain primes: see primes, Germain
German names of numbers , sequence related to :

1-, 2-, 3-, ... digit numbers in alphabetical order in German: A001061 .
German money before the introduction of the Euro, Values in Pfennigs of : A082593 .
Number of letters vowels, consonants in n, letters in n-th prime (in German): A007208, A037199, A037200, A164821
see also Index entries for sequences related to number of letters in n
Final digit sum of numerical values of German names of the nonnegative numbers: A119946.
Sum of numerical values of German names of the nonnegative numbers: A119945
Smallest positive integer containing the n-th letter of the alphabet (in German): A208934.
First & second German version of A131744 (Angelini's 1995 puzzle): A133816, A133817.

GF(2)[X]-polynomials , sequences containing or operating on :
GF(2)[X]-polynomials , sequences containing or operating on, (These sequences assume that the GF(2)[X]-polynomial is encoded in binary expansion of n like this: n=11, 1011 in binary, stands for polynomial x^3+x+1, n=25, 11001 in binary, stands for polynomial x^4+x^3+1)
GF(2)[X]-polynomials, addition table, i.e. XOR(x,y), A003987
GF(2)[X]-polynomials, bijections from/to natural numbers, preserving multiplicative structures, A091202-A091203, A091204-A091205
GF(2)[X]-polynomials, factorizations, A256170
GF(2)[X]-polynomials, GCD(x,y), table of, A091255
GF(2)[X]-polynomials, irreducible and also prime in N, A091206
GF(2)[X]-polynomials, irreducible and non-primitive, A091252
GF(2)[X]-polynomials, irreducible and primitive, A091250*, A058947, A011260
GF(2)[X]-polynomials, irreducible but composite in N, A091214
GF(2)[X]-polynomials, irreducible, A014580*, A058943, A001037
GF(2)[X]-polynomials, irreducible, characteristic function, A091225
GF(2)[X]-polynomials, irreducible, order of each, A059478
GF(2)[X]-polynomials, LCM(x,y), table of, A091256
GF(2)[X]-polynomials, Matula-Goebel-tree analogues, A091238, A091239, A091240
GF(2)[X]-polynomials, Moebius-analogue, A091219
GF(2)[X]-polynomials, multiples of x+1, A048724
GF(2)[X]-polynomials, multiples of x+1, shifted once right, A003188
GF(2)[X]-polynomials, multiples of x^2+1, A048725
GF(2)[X]-polynomials, multiples of x^2+x+1, A048727
GF(2)[X]-polynomials, multiples of x^2+x, A048726
GF(2)[X]-polynomials, multiplication table, A048720, A091257
GF(2)[X]-polynomials, number of distinct irreducible divisors, A091221
GF(2)[X]-polynomials, number of divisors, A091220
GF(2)[X]-polynomials, number of irreducible divisors, A091222
GF(2)[X]-polynomials, of the form x^n+1, A000051
GF(2)[X]-polynomials, of the form x^n+1, number of distinct irreducible divisors, A000374
GF(2)[X]-polynomials, of the form x^n+1, number of irreducible divisors, A091248
GF(2)[X]-polynomials, powers of x+1, A001317
GF(2)[X]-polynomials, powers of x^2+1, A038183
GF(2)[X]-polynomials, powers of x^2+x+1, A038184
GF(2)[X]-polynomials, powers, table of, A048723
GF(2)[X]-polynomials, quasi-factorial analogue, A048631
GF(2)[X]-polynomials, reducible and also composite in N, A091212
GF(2)[X]-polynomials, reducible but prime in N, A091209
GF(2)[X]-polynomials, reducible, A091242, A091254
GF(2)[X]-polynomials, smallest m >= n, such that polynomial with code m is irreducible, A091228
GF(2)[X]-polynomials, squares, A000695
GF(2)[X]-polynomials: see also Trinomials over GF(2)

g.f.: see generating functions

Gijswijt's sequence , sequences related to :
Gijswijt's sequence: A090822*
Gijswijt's sequence: see also (1) A014221, A025829, A029285, A053633, A055773, A073724, A091407-A091413, A091579, A091586-A091588, A091787, A091799, A091840-A091845, A091970
Gijswijt's sequence: see also (2) A093369, A093370, A094005, A093955-A093958, A094176, A094195, A094321, A094917, A095828, A156799, A157925, A187201, A217206
Gijswijt's sequence: generalizations: A091975, A091976, A092331-A092335
Gijswijt's sequence: generalizations: A094321 (greedy version of second-order sequence)
Gijswijt's sequence: generalizations: A094781, A094782, A094839 (two-dim. version)
Gijswijt's sequence: see also under curling number

Gilbreath's conjecture, sequences related to :

Gilbreath's conjecture: A036262*, A036261

girth: see graphs, girth of
Giuga numbers: A007850*
Glaisher numbers, sequences related to :

Glaisher's chi numbers: A002171*, A002172
Glaisher's G numbers: A002111*
Glaisher's H numbers: A002112*
Glaisher's H' numbers: A002114*
Glaisher's I numbers: A047788*/A047789*
Glaisher's J numbers: A002325*
Glaisher's T numbers: A002439*, A002811

glass worms: see vers de verres
Gleason's theorem: A008621, A008620
gluons: A005415
glycols: A000634


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


Personal tools