This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081355 Levenshtein distance between n and n^2 in decimal representation. 6
 0, 0, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 1, 2, 2, 2, 3, 2, 2, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 3, 4, 4, 3, 2, 3, 4, 4, 4, 3, 3, 4, 4, 4, 2, 3, 4, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 2, 4, 3, 4, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Michael Gilleland, Levenshtein Distance. [It has been suggested that this algorithm gives incorrect results sometimes. - N. J. A. Sloane] MATHEMATICA levenshtein[s_List, t_List] := Module[{d, n = Length@s, m = Length@t}, Which[s === t, 0, n == 0, m, m == 0, n, s != t, d = Table[0, {m + 1}, {n + 1}]; d[[1, Range[n + 1]]] = Range[0, n]; d[[Range[m + 1], 1]] = Range[0, m]; Do[ d[[j + 1, i + 1]] = Min[d[[j, i + 1]] + 1, d[[j + 1, i]] + 1, d[[j, i]] + If[ s[[i]] === t[[j]], 0, 1]], {j, m}, {i, n}]; d[[ -1, -1]] ]]; f[n_] := levenshtein[IntegerDigits[n], IntegerDigits[n^2]]; Table[f[n], {n, 0, 104}] (* Robert G. Wilson v, Jan 25 2006 *) CROSSREFS Cf. A081356, A002061, A000290, A081230. Sequence in context: A051486 A218541 A213911 * A223708 A060778 A096492 Adjacent sequences:  A081352 A081353 A081354 * A081356 A081357 A081358 KEYWORD nonn,base AUTHOR Reinhard Zumkeller, Mar 18 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 06:00 EDT 2019. Contains 328046 sequences. (Running on oeis4.)