OFFSET
0,2
REFERENCES
D. E. Knuth, "Supernatural Numbers", in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 310-325.
D. E. Knuth, Selected Papers on Fun and Games, CSLI, 2011.
R. E. Krichevsky, Szhatie i poisk informatsii (Compressing and searching for information), Moscow, 1988, ISBN 5-256-00325-9.
LINKS
Matthew House, Table of n, a(n) for n = 0..10000
Robert Munafo, Alternative Number Formats, section on "Lexicographic Strings".
Wikipedia, Levenshtein coding
FORMULA
The code for n is found as follows: from right to left, the truncated (without the leading 1) binary representations of n, floor(log_2(n)), floor(log_2(floor(log_2(n)))), etc., are written as long as they consist of at least one bit; then we write a 0 followed by log*(n) 1's.
PROG
(Python)
def encode(n):
if n == 0: return "0"
c, C = "", 1
while n > 0:
b = bin(n)[3:]
c = b + c
if (m := len(b)) > 0: C += 1
n = m
c = "1" * C + "0" + c
return c
a = lambda n: int(encode(n), 2) # Darío Clavijo, Aug 23 2024
(PARI) apply( {A010097(n)=if(n, n+2^(n=exponent(n))*((n=A010097(n))+2<<exponent(n+!n)-1))}, [0..44]) \\ M. F. Hasler, Oct 24 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Offset corrected by Matthew House, Aug 15 2016
STATUS
approved