login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010096 log2*(n) (version 1): number of times floor(log_2(x)) is used in floor(log_2(floor(log_2(...(floor(log_2(n)))...)))) = 0. 15
1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

From Hieronymus Fischer, Apr 08 2012: (Start)

A possibly simpler definition could be: "Number of iterations log_2(log_2(log_2(...(n)...))) such that the result is < 1".

Changing "< 1" to "<= 1" produces version 3, A230864.

With the only difference in the termination criterion, the definition is essentially the same as version 2, A001069. If we change the definition to "floor(log_2(... = 1" we get A001069. Therefore we get A001069 when subtracting 1 from each term. (End)

LINKS

Table of n, a(n) for n=1..79.

FORMULA

From Hieronymus Fischer, Apr 08 2012: (Start)

a(n) = A001069(n) + 1.

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n))))...))); E_{i=1..0} := 1; example: E_{i=1..4} 2 = 2^(2^(2^2)) = 2^16, we get:

a(E_{i=1..n} 2) = a(E_{i=1..n-1} 2) +1, for n >= 1.

G.f.: g(x) = 1/(1-x)*Sum_{k>=0} x^(E_{i=1..k} 2).

The explicit first terms of this g.f. are

g(x) = (x + x^2 + x^4 + x^16 + x^65536 + ...)/(1-x). (End)

EXAMPLE

Becomes 5 at 65536, 6 at 2^65536, etc.

MATHEMATICA

f[n_] := Length@ NestWhileList[ Log[2, #] &, n, # >= 1 &] - 1; Array[f, 105] (* Robert G. Wilson v, Apr 19 2012 *)

PROG

(Haskell)

a010096 = length . takeWhile (/= 0) . iterate a000523

-- Reinhard Zumkeller, Mar 16 2012

(PARI) a(n)=if(n<1, 0, 1+a(log(n)\log(2))) \\ Charles R Greathouse IV, Apr 17 2012

(PARI) a(n)=if(n<1, 0, 1+a(logint(n, 2))) \\ Charles R Greathouse IV, Oct 23 2015

CROSSREFS

Cf. A063510, A000523, A001069 (version 2), A230864 (version 3).

Sequence in context: A300402 A211020 A157639 * A230864 A063510 A156878

Adjacent sequences:  A010093 A010094 A010095 * A010097 A010098 A010099

KEYWORD

nonn,nice

AUTHOR

Leonid Broukhis

EXTENSIONS

Edited by Hieronymus Fischer, Apr 08 2012

Edited by N. J. A. Sloane, Nov 03 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 17:35 EST 2019. Contains 320400 sequences. (Running on oeis4.)