The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010099 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=4. 8
 1, 4, 4, 16, 64, 1024, 65536, 67108864, 4398046511104, 295147905179352825856, 1298074214633706907132624082305024, 383123885216472214589586756787577295904684780545900544 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Peter Bala, Nov 01 2013: (Start) Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 3*sum {n = 1..inf} 1/4^floor(n*phi) (= 9*sum {n = 1..inf} floor(n/phi)/4^n) = 0.80938 42984 64421 90504 ... = 1/(1 + 1/(4 + 1/(4 + 1/(16 + 1/(64 + 1/(1024 + 1/(65536 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565. Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/4^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End) LINKS Indranil Ghosh, Table of n, a(n) for n = 0..17 W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198. P. G. Anderson, T. C. Brown, P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity, Proc. Amer. Math. Soc. 123 (1995), 2005-2009. D. Bowman, A new generalization of Davison's theorem, Fib. Quart. Volume 26 (1988), 40-45 FORMULA a(n) = 4^Fibonacci(n). MAPLE a[ -1]:=1:a[0]:=4: a[1]:=4: for n from 2 to 13 do a[n]:=a[n-1]*a[n-2] od: seq(a[n], n=-1..10); # Zerinvary Lajos, Mar 19 2009 CROSSREFS Cf. A000045, A000301, A010098, A010100, A014565, A214706, A214887, A215270, A215271, A215272. Column k=4 of A244003. Sequence in context: A185567 A203536 A038788 * A204295 A203101 A060691 Adjacent sequences: A010096 A010097 A010098 * A010100 A010101 A010102 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 13:25 EST 2023. Contains 359923 sequences. (Running on oeis4.)