OFFSET
0,4
COMMENTS
Apparently, one less than the number of cyclotomic factors of the polynomial x^n - 1. - Ralf Stephan, Aug 27 2013
Let the binary expansion of n >= 1 end with m >= 0 1's. Then a(n) = m if n = 2^m-1 and a(n) = m+1 if n > 2^m-1. - Vladimir Shevelev, Aug 14 2017
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Michael Gilleland, Levenshtein Distance [broken link] [It has been suggested that this algorithm gives incorrect results sometimes. - N. J. A. Sloane]
Frank Ruskey and Chris Deugau, The Combinatorics of Certain k-ary Meta-Fibonacci Sequences, JIS 12 (2009), Article 09.4.3.
Vladimir Shevelev, On a Luschny question, arXiv:1708.08096 [math.NT], 2017.
Eric Weisstein's World of Mathematics, Binary.
Eric Weisstein's World of Mathematics, Binary Carry Sequence.
WikiBooks: Algorithm Implementation, Levenshtein distance.
FORMULA
a(n) = A152487(n + 1, n). - Reinhard Zumkeller, Dec 06 2008
a(A004275(n)) = 1. - Reinhard Zumkeller, Mar 13 2011
From Vladeta Jovovic, Aug 25 2004, fixed by Reinhard Zumkeller, Jun 09 2015: (Start)
a(2*n) = 1, a(2*n + 1) = a(n) + 1 for n > 0.
G.f.: 1 + Sum_{k > 0} x^(2^k - 1)/(1 - x^(2^(k - 1))). (End)
Let T(x) be the g.f., then T(x) - x*T(x^2) = x/(1 - x). - Joerg Arndt, May 11 2010
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Sep 29 2023
MAPLE
A091090 := proc(n)
if n = 0 then
1;
else
end if;
end proc:
seq(A091090(n), n=0..100); # R. J. Mathar, Sep 07 2016
# Alternatively, explaining the connection with A135517:
a := proc(n) local count, k; count := 1; k := n;
while k <> 1 and k mod 2 <> 0 do count := count + 1; k := iquo(k, 2) od:
count end: seq(a(n), n=0..101); # Peter Luschny, Aug 10 2017
MATHEMATICA
a[n_] := a[n] = Which[n==0, 1, n==1, 1, EvenQ[n], 1, True, a[(n-1)/2] + 1]; Array[a, 102, 0] (* Jean-François Alcover, Aug 12 2017 *)
PROG
(Haskell)
a091090 n = a091090_list !! n
a091090_list = 1 : f [1, 1] where f (x:y:xs) = y : f (x:xs ++ [x, x+y])
-- Same list generator function as for a036987_list, cf. A036987.
-- Reinhard Zumkeller, Mar 13 2011
(Haskell)
a091090' n = levenshtein (show $ a007088 (n + 1)) (show $ a007088 n) where
levenshtein :: (Eq t) => [t] -> [t] -> Int
levenshtein us vs = last $ foldl transform [0..length us] vs where
transform xs@(x:xs') c = scanl compute (x+1) (zip3 us xs xs') where
compute z (c', x, y) = minimum [y+1, z+1, x + fromEnum (c' /= c)]
-- Reinhard Zumkeller, Jun 09 2015
(Haskell) -- following Vladeta Jovovic's formula
import Data.List (transpose)
a091090'' n = vjs !! n where
vjs = 1 : 1 : concat (transpose [[1, 1 ..], map (+ 1) $ tail vjs])
-- Reinhard Zumkeller, Jun 09 2015
(PARI) a(n)=my(m=valuation(n+1, 2)); if(n>>m, m+1, max(m, 1)) \\ Charles R Greathouse IV, Aug 15 2017
(Python)
def A091090(n): return (~(n+1)&n).bit_length()+bool(n&(n+1)) if n else 1 # Chai Wah Wu, Sep 18 2024
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Reinhard Zumkeller, Dec 19 2003
STATUS
approved