login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135416 a(n) = A036987(n)*(n+1)/2. 31
1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Guy Steele defines a family of 36 integer sequences, denoted here by GS(i,j) for 1 <= i, j <= 6, as follows. a[1]=1; a[2n] = i-th term of {0,1,a[n],a[n]+1,2a[n],2a[n]+1}; a[2n+1] = j-th term of {0,1,a[n],a[n]+1,2a[n],2a[n]+1}. The present sequence is GS(1,5).

The full list of 36 sequences:

GS(1,1) = A000007

GS(1,2) = A000035

GS(1,3) = A036987

GS(1,4) = A007814

GS(1,5) = A135416 (the present sequence)

GS(1,6) = A135481

GS(2,1) = A135528

GS(2,2) = A000012

GS(2,3) = A000012

GS(2,4) = A091090

GS(2,5) = A135517

GS(2,6) = A135521

GS(3,1) = A036987

GS(3,2) = A000012

GS(3,3) = A000012

GS(3,4) = A000120

GS(3,5) = A048896

GS(3,6) = A038573

GS(4,1) = A135523

GS(4,2) = A001511

GS(4,3) = A008687

GS(4,4) = A070939

GS(4,5) = A135529

GS(4,6) = A135533

GS(5,1) = A048298

GS(5,2) = A006519

GS(5,3) = A080100

GS(5,4) = A087808

GS(5,5) = A053644

GS(5,6) = A000027

GS(6,1) = A135534

GS(6,2) = A038712

GS(6,3) = A135540

GS(6,4) = A135542

GS(6,5) = A054429

GS(6,6) = A003817

(with a(0)=1): Moebius transform of A038712.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537

Index entries for sequences related to binary expansion of n

FORMULA

G.f.: sum{k>=1, 2^(k-1)*x^(2^k-1) }.

Recurrence: a(2n+1) = 2a(n), a(2n) = 0, starting a(1) = 1.

MAPLE

GS:=proc(i, j, M) local a, n; a:=array(1..2*M+1); a[1]:=1;

for n from 1 to M do

a[2*n] :=[0, 1, a[n], a[n]+1, 2*a[n], 2*a[n]+1][i];

a[2*n+1]:=[0, 1, a[n], a[n]+1, 2*a[n], 2*a[n]+1][j];

od: a:=convert(a, list); RETURN(a); end;

GS(1, 5, 200):

MATHEMATICA

i = 1; j = 5; Clear[a]; a[1] = 1; a[n_?EvenQ] := a[n] = {0, 1, a[n/2], a[n/2]+1, 2*a[n/2], 2*a[n/2]+1}[[i]]; a[n_?OddQ] := a[n] = {0, 1, a[(n-1)/2], a[(n-1)/2]+1, 2*a[(n-1)/2], 2*a[(n-1)/2]+1}[[j]]; Array[a, 105] (* Jean-François Alcover, Sep 12 2013 *)

PROG

(PARI)

A048298(n) = if(!n, 0, if(!bitand(n, n-1), n, 0));

A135416(n) = (A048298(n+1)/2); \\ Antti Karttunen, Jul 22 2018

(Python)

def A135416(n): return int(not(n&(n+1)))*(n+1)>>1 # Chai Wah Wu, Jul 06 2022

CROSSREFS

Equals A048298(n+1)/2. Cf. A036987, A182660.

Sequence in context: A245527 A287871 A336644 * A134309 A051516 A236799

Adjacent sequences: A135413 A135414 A135415 * A135417 A135418 A135419

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, based on a message from Guy Steele and Don Knuth, Mar 01 2008

EXTENSIONS

Formulae and comments by Ralf Stephan, Jun 20 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 18:02 EST 2022. Contains 358588 sequences. (Running on oeis4.)