login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001250 Number of alternating permutations of order n.
(Formerly M1235 N0472)
20
1, 2, 4, 10, 32, 122, 544, 2770, 15872, 101042, 707584, 5405530, 44736512, 398721962, 3807514624, 38783024290, 419730685952, 4809759350882, 58177770225664, 740742376475050, 9902996106248192, 138697748786275802 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For n>1, a(n) is the number of permutations of order n with the length of longest run equal 2.

Boustrophedon transform of the Euler numbers (A000111). [Berry et al., 2013] - N. J. A. Sloane, Nov 18 2013

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.

F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 262.

C. Davis, Problem 4755, Amer. Math. Monthly, 64 (1957) 596; solution by W. J. Blundon, 65 (1958), 533-534.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Max Alekseyev, Table of n, a(n) for n = 1..100

Max A. Alekseyev, On the number of permutations with bounded run lengths, arXiv, May 22, 2012.

D. Berry, J. Broom, D. Dixon, A. Flaherty, , Umbral Calculus and the Boustrophedon Transform, 2013.

S. Kitaev, Multi-avoidance of generalized patterns, Discrete Math., 260 (2003), 89-100. (See p. 100.)

Eric Weisstein's World of Mathematics, Alternating Permutation

FORMULA

a(n) = coefficient of x^(n-1)/(n-1)! in power series expansion of (tan(x) + sec(x))^2 = (tan(x)+1/cos(x))^2.

a(n) = coefficient of x^n/n! in power series expansion of 2*(tan(x) + sec(x)) - 2 - x. - Michael Somos, Feb 05 2011

For n>1, a(n) = 2 * A000111(n). - Michael Somos, Mar 19 2011

a(n) = 4*|Li_{-n}(i)|-[n=1] = sum_{m=0...n/2} (-1)^m*2^{1-k}*sum_{j=0...k} binomial(k,j)*(-1)^j*(k-2*j)^(n+1)/k - [n=1], where k = k(m) = n+1-2*m  and  [n=1] equals 1 if n=1 and zero else; Li denotes the polylogarithm (and i^2 = -1). - M. F. Hasler, May 20 2012

From Sergei N. Gladkovskii, Jun 18 2012: (Start)

Let E(x) = 2/(1-sin(x))-1 (essentially the e.g.f.), then

E(x) =  -1 + 2*(-1/x + 1/(1-x)/x- x^3/((1-x)*((1-x)*G(0) + x^2))) where G(k)= (2*k+2)*(2*k+3)-x^2+(2*k+2)*(2*k+3)*x^2/G(k+1); (continued fraction, Euler's 1st kind, 1-step).

E(x) = -1 + 2*( -1/x + 1/(1-x)/x- x^3/((1-x)*((1-x)*G(0) + x^2)) ) where G(k)= 8*k+6-x^2/(1 + (2*k+2)*(2*k+3)/G(k+1)); (continued fraction, Euler's 2nd kind, 2-step).

E(x) = (tan(x) + sec(x))^2 = -1 + 2/(1-x*G(0)) where G(k)= 1 - x^2/(2*(2*k+1)*(4*k+3) - 2*x^2*(2*k+1)*(4*k+3)/(x^2 - 4*(k+1)*(4*k+5)/G(k+1))); (continued fraction, 3rd kind, 3-step).

(End).

G.f.: conjecture: 2*T(0)/(1-x) -1, where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x*(k+1))*(1-x*(k+2))/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 19 2013

EXAMPLE

x + 2*x^2 + 4*x^3 + 10*x^4 + 32*x^5 + 122*x^6 + 544*x^7 + 2770*x^8 + ...

MAPLE

# With Eulerian polynomials:

A := (n, x) -> `if`(n=1, 1/2, add(add((-1)^j*binomial(n+1, j)*(m+1-j)^n, j=0..m)*x^m, m=0..n-1)):

A001250 := n -> 2*(I-1)^(1-n)*exp(I*(n-1)*Pi/2)*A(n, I);

seq(A001250(i), i=1..22); # Peter Luschny, May 27 2012

PROG

(PARI) {a(n) = local(v=[1], t); if( n<0, 0, for( k=2, n+3, t=0; v = vector( k, i, if( i>1, t += v[k+1 - i]))); v[3])} /* Michael Somos, Feb 03 2004 */

(PARI) {a(n) = if( n<0, 0, n! * polcoeff( (tan(x + x * O(x^n)) + 1 / cos(x + x * O(x^n)))^2, n))} /* Michael Somos, Feb 05 2011 */

(PARI) A001250(n)=sum(m=0, n\2, my(k); (-1)^m*sum(j=0, k=n+1-2*m, binomial(k, j)*(-1)^j*(k-2*j)^(n+1))/k>>k)*2-(n==1)  \\ M. F. Hasler, May 19 2012

(PARI) A001250(n)=4*abs(polylog(-n, I))-(n==1)  \\ M. F. Hasler, May 20 2012

(Sage) # Algorithm of L. Seidel (1877)

def A001250_list(n) :

    R = [1]; A = {-1:0, 0:2}; k = 0; e = 1

    for i in (0..n) :

        Am = 0; A[k + e] = 0; e = -e

        for j in (0..i) : Am += A[k]; A[k] = Am; k += e

        if i > 1 : R.append(A[-i//2] if i%2 == 0 else A[i//2])

    return R

A001250_list(22) # Peter Luschny, Mar 31 2012

(PARI)

x='x+O('x^66);

egf=2*(tan(x)+1/cos(x))-2-x;

Vec(serlaplace(egf))

/* Joerg Arndt, May 28 2012 */

CROSSREFS

Cf. A000111. A diagonal of A010094.

Cf. A001251, A001252, A001253, A010026, A211318.

Sequence in context: A120017 A000736 A176006 * A013032 A098830 A121277

Adjacent sequences:  A001247 A001248 A001249 * A001251 A001252 A001253

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Edited by Max Alekseyev, May 04 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 1 19:36 EDT 2014. Contains 245137 sequences.