This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section De

From OeisWiki
Jump to: navigation, search

Index to OEIS: Section De

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]

de Bruijn sequences: A080679, A058342, A083570, A135472, A144569, A166315, A166316
decagon is spelled 10-gon in the OEIS

deceptive plots, sequences related to :
deceptive plots: A014612, A034598, A034415, A001358 (semiprimes)

decimal encoding of prime factorization: A037276, A067599, A080670
Decimal equivalent:: A003100, A003188

decimal expansion , sequences related to :
decimal expansion contains no 0's: A007377, A007496
decimal expansions of constants in H. Cohen, High-precision calculation of Hardy-Littlewood constants, 1998, A085541, A136141, A086242, A136271, A143524, A077761, A188157, A221710, A137245, A221711, A005597, A005596, A221712, A221713
decimal expansion of 1/n, sequences related to: A051626, A007732, A001913, A036275, A114205, A114206
decimal expansion of n-th root of x: see under Roots, n-th root of x
decimal expansion of square roots: see under square root(s)
decimal expansions (1):: A002117, A007493, A002163, A002392, A007377, A007496, A005532, A006891, A002580, A007507, A002210, A001113, A003678, A000796
decimal expansions (2):: A005533, A005600, A005596, A006834, A005534, A002193, A002285, A002581, A007525, A006890, A005531, A003671, A003672, A002389
decimal expansions (3):: A001620, A005480, A007450, A001622, A005597, A003676, A002162, A005481, A003677, A003673, A002194, A002161, A005486, A005601
decimal expansions (4):: A006833, A003675, A005482, A006752, A002391, A002388
decimal expansions - see also under individual constants (e, A001113; Pi, A000796; etc.)
sqrt(k), k=1..20: A000007, A002193, A002194, A000038, A002163, A010464, A010465, A010466, A010467, A010468, A010469, A010470, A010471, A010472, A010473, A010474, A010475, A010476
sqrt(k), k=21..40: A010477, A020478, A010479, A010480, A010481, A010482, A010483, A010484, A010485, A010486, A010487, A010488, A010489, A010490, A010491, A010492, A010493, A010494
sqrt(k), k=41..60: A010495, A010496, A010497, A010498, A010499, A010500, A010501, A010502, A010503, A010504, A010505, A010506, A010507, A010508, A010509, A010510, A010511, A010512, A010513

decimals, 1/k, sequences related to :

k=1..20: A000007, A020761, A010701, A020773, A000038, A020793, A020806, A020821, A000012, A000007, A010680, A021016, A021017, A021018, A021019, A021020, A007450, A021022, A021023, A020761
k=21..40: A021025, A021026, A021027, A021028, A020773, A021030, A021031, A021032, A021033, A010701, A021035, A021036, A010674, A021038, A021039, A021040, A021041, A021042, A021043, A020773
k=41..60: A021045, A021046, A021047, A021444, A007395, A021050, A021051, A021052, A021053, A000038, A021055, A021056, A021057, A021058, A021059, A021060, A021061, A021062, A021063, A020793
k=61..80: A021065, A021066, A021067, A021068, A021069, A021070, A021071, A021072, A021073, A020806, A021075, A021077, A021078, A122553, A021080, A021081, A021082, A021083, A020821
k=81..100: A021100
k=181..200: A021196
k=201..220: A021212
k=321..340: A021329
k=381..400: A021388
k=821..840: A021836

Decompositions:: A002850, A002126, A001031, A002372

Dedekind , sequences related to :
Dedekind psi function: A001615
Dedekind psi function, higher order : A065958, A065959, A065960
Dedekind's function eta(x): A010815*, A007706*
Dedekind's function eta(x): see also under eta(x)
Dedekind's problem (or numbers): A000372*, A003182*, A007153*
Dedekind's problem: see also Boolean functions, monotone
deficiency , sequences related to :
deficiency: A033879*, A033880, A033883
deficiency: see also abundancy
deficient numbers: A005100*, A006039

Deficit:: A005675
Definite integrals:: A002571, A002570
Degree sequences:: A007020, A005155 degrees of irreducible representations, sequences related to :

degrees of irreducible representations: (1) A003875*, A003869, A003870, A003871, A003872, A003873, A003874, A003876, A003877, A059796
degrees of irreducible representations: (2) A079685, A108942, A003880, A152465, A152481, A003884, A152486, A003856, ...
degrees of irreducible representations: see also alternating group
degrees of irreducible representations: see also symmetric group
Delannoy numbers, sequences related to :
Delannoy numbers, central: A001850*
Delannoy numbers, table of: A008288*

Delaunay (or Delone) decompositions: A070881, A070882

Deleham's DELTA operator, sequences related to :

definition: A084938
A000657, A001263, A002114, A003319, A003506, A007318, A008275, A008276, A008277, A008288, A008292, A008315, A009766, A010054, A011117, A011973, A016095, A019538, A021012, A023531, A026729, A027465, A028246, A028297, A028338, A029600, A029618, A029635, A029653, A030523, A033184, A033877, A034839, A034867, A035324, A036970, A037027, A038207, A038303, A038763, A039599, A039757, A039758, A048993, A048994, A049020, A049444, A049458, A049459, A049460, A049600, A050143, A050165, A051160, A051338, A051339, A051379, A051380, A051523, A052553, A053538, A053979, A054142, A054456, A054458, A054654, A055372, A055373, A055374, A055807, A055830, A055883, A056241, A056242, A058942, A059340, A059364, A059365, A059438, A060086, A060627, A060693, A062110, A062991, A063007, A063967, A064861, A065109, A065547, A067318, A071919, A073370, A075263, A075497, A075498, A076791, A078812, A079628, A079641, A080232, A080245, A080247, A081277, A083061, A084938, A085478, A085707, A085771, A085791, A085792, A085838, A085843, A085845, A085852, A085853, A085880, A085881, A086329, A086646, A086810, A086872, A087736, A087903, A088617, A088855, A088874, A088969, A088990, A088996, A089949, A090181, A090238, A090582, A090981, A091866, A091917, A091977, A092865, A093560, A093644, A094305, A094344, A094346, A094385, A094436, A094437, A094441, A094442, A094456, A094638, A094645, A094646, A094665, A097805, A097806, A098158, A098435, A098925, A099039, A099089, A099096, A099097, A099394, A101950, A102365, A102756, A103136, A103452, A103631, A103633, A104027, A104219, A104562, A104684, A105070, A105306, A105475, A105477, A105495, A105793, A106180, A106195, A106566, A106800, A107842, A108084, A108085, A108694, A108747, A108891, A109062, A109450, A109466, A109692, A110441, A110510, A110518, A110555, A111006, A111049, A111106, A111146, A111184, A112351, A112466, A112467, A112555, A112883, A112899, A112906, A113953, A114189, A114193, A114608, A114656, A114687, A116395, A116412, A116414, A117317, A117411, A118800, A119473, A119865, A119900, A120493, A120730, A121314, A121462, A121575, A121576, A122016, A122070, A122075, A122538, A122542, A122851, A122935, A122950, A122960, A123110, A123125, A123149, A123254, A123585, A123967, A123971, A124037, A124182, A124448, A124645, A124860, A124927, A125185, A125553, A125662, A126124, A126216, A127160, A127529, A127543, A127647, A127648, A127743, A127774, A128100, A128908, A129062, A129186, A129267, A129710, A129818, A130020, A130123, A130167, A130534, A130595, A130847, A130850, A131108, A131129, A131131, A131198, A131427, A131689, A132372, A132393, A133087, A133156, A133336, A133366, A133367, A133566, A133569, A133607, A134058, A134059, A134309, A134315, A134400, A134402, A135065, A135089, A135837, A135950, A136124, A136158, A140575, A141343, A141660, A143376, A143491, A143492, A143493, A145324, A145879, A147703, A147716, A147720, A147723, A147746, A147747, A152198, A152815, A152842, A153342, A153764, A153861, A154312, A154380, A154388, A154602, A154829, A154929, A155112, A155161, A156319, A156992, A157491, A157783, A157784, A157785, A157832, A157963, A158020, A158474, A159764, A160232, A161198, A163626, A164942, A164948, A164961, A164981, A165241, A165253, A165293, A166065, A166124, A167371, A167374, A167656, A167666, A167684, A167685, A168216, A168511, A172040, A172094, A172101, A172185, A172249, A172250, A172283, A172431, A173007, A173008, A173018, A173050, A174014, A175136, A181472, A181650, A181974, A182001, A182042, A182059, A182412, A182436, A183189, A183190, A184962, A185081, A185285, A185331, A185384, A185410, A185411, A185962, A187075, A188137, A188440, A193722, A193723, A193724, A193725, A193726, A193727, A193728, A193729, A193730, A193731, A193734, A193735, A193815, A193816, A193817, A193818, A193819, A194582, A195204, A195205, A196182, A196347, A196389, A198295, A198321, A198379, A198792, A198793, A198954, A199011, A199324, A199335, A199400, A199479, A199856, A199881, A200139, A200545, A200659, A201093, A201701, A201730, A201947, A201972, A202023, A202064, A202209, A202389, A202390, A202395, A202396, A202551, A202603, A202992, A204040, A204533, A205574, A205813, A206022, A206294, A206306, A206474, A206735, A206800, A206819, A206831, A207327, A207536, A207537, A207538, A207543, A207605, A207606, A207607, A207608, A207609, A207611, A207628, A207636, A207815, A207823, A207824, A208153, A208324, A208328, A208329, A208330, A208331, A208332, A208333, A208334, A208335, A208337, A208338, A208339, A208340, A208341, A208342, A208343, A208344, A208345, A208532, A208659, A208747, A208748, A208749, A208750, A208751, A208752, A208755, A208756, A208757, A208758, A208759, A208760, A208761, A208762, A208763, A208764, A208765, A208766, A208910, A209125, A209126, A209127, A209128, A209129, A209130, A209131, A209132, A209133, A209134, A209135, A209136, A209137, A209139, A209141, A209142, A209144, A209149, A209171, A209172, A209413, A209414, A209415, A209416, A209417, A209418, A209419, A209420, A209599, A209687, A209695, A209696, A209745, A209746, A209757, A209830, A209831, A210042, A210221, A210239, A210381, A210557, A210636, A210637, A210789, A210790, A210791, A210792, A210793, A210803, A210804, A210868, A211183, A211399, A211402, A211608, A216344, A220399, A221179, A225470, A225471, A225477, A225478, A227450, A236076, A236376, A238156, A238160, A238731, A238941, A238988, A255935, A258758, A265435

DEMICHEL, Patrick, sequences received in May 1996 from: A012001-A013573 (except for a few gaps). See especially A013538.

Demlo numbers, sequences related to :
Demlo numbers: A002477*
Demlo numbers: see also (1) A002275, A063750, A075411, A075412, A075413, A075414, A075415, A075416, A075417, A080150, A080151, A080160
Demlo numbers: see also (2) A080161, A080162

denumerants: A000115*
derangements: A000166*
derivative of n: A038554*, A003415*
Derivatives:: A005168, A005727, A003262
descending dungeons: see dungeons
describe n: see "say what you see"
describe previous term!: A005150*
describe previous term: see "say what you see"
Describe previous term:: A005341, A006751, A006715, A006919, A007651, A006711
designs, covering: see covering numbers
designs, spherical: see spherical designs
destinies: see destiny
destiny: if a map f is applied repeatedly to n, the destiny of n is the smallest number in the resulting trajectory
destiny: see A161590, A161592, A161593

determinants, sequences related to :
determinants:: A003116, A002771, A002772, A001332, A002776, A002204, A006377, A005249
determinants, maximal: A003432, A003433, A034920, A013588, A034918, A036297, A051753, A085000, A086432, A099815, A119002, A119003, A119004, A119005, A180128, A215644, A215723, A215724, A215897

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]