The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119678 a(n) is the least k such that 4^k mod k = n. 46
 3, 14, 137243, 5, 6821, 10, 57, 124, 35, 18, 2791496231, 244, 51, 505, 199534799, 20, 30271293169, 49, 45, 236, 399531841, 42, 533, 25, 39, 50, 352957, 36, 995, 98, 33, 112, 47503, 55, 42345881, 44, 2981, 289, 805, 78, 1019971289, 25498, 2121, 212 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) > n. Numbers n > 1 such that a(n-1) = n are listed in A015950. a(87) > 10^14. a(11) <= 2791496231, a(17) <= 140631956671, a(53) <= 52134328061 from Joe K. Crump (joecr(AT)carolina.rr.com), Feb 10 2007 LINKS Ryan Propper, Table of n, a(n) for n = 1..82 FORMULA a(5^k-1) = 5^k. MATHEMATICA Do[k = 1; While[PowerMod[4, k, k] != n, k++ ]; Print[k], {n, 30}] t = Table[0, {10000} ]; k = 1; While[ k < 5000000000, a = PowerMod[4, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* search limits expanded by Robert G. Wilson v, Jul 14 2009 *) PROG (Python) def a(n): k = 1 while 4**k % k != n: k += 1 return k print([a(n) for n in range(1, 11)]) # Michael S. Branicky, Mar 14 2021 CROSSREFS Cf. A015950, A036236, A078457, A119679, A127816, A119715, A119714, A127817, A127818, A127819, A127820, A127821. Sequence in context: A268158 A050645 A048568 * A096682 A331228 A331697 Adjacent sequences: A119675 A119676 A119677 * A119679 A119680 A119681 KEYWORD nonn AUTHOR Ryan Propper, Jun 12 2006 EXTENSIONS a(11) = 2791496231 from Robert G. Wilson v, Feb 11 2007; confirmed by Ryan Propper, Feb 15 2007 Link corrected by R. J. Mathar, Jul 24 2009 a(83) = 3085807457009 = 113 * 331 * 82501603 from Hagen von Eitzen, Jul 27 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 01:51 EST 2022. Contains 358649 sequences. (Running on oeis4.)