login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119678 a(n) is the least k such that 4^k mod k = n. 46
3, 14, 137243, 5, 6821, 10, 57, 124, 35, 18, 2791496231, 244, 51, 505, 199534799, 20, 30271293169, 49, 45, 236, 399531841, 42, 533, 25, 39, 50, 352957, 36, 995, 98, 33, 112, 47503, 55, 42345881, 44, 2981, 289, 805, 78, 1019971289, 25498, 2121, 212 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) > n.

Numbers n > 1 such that a(n-1) = n are listed in A015950.

a(87) > 10^14.

LINKS

Ryan Propper, Table of n, a(n) for n = 1..82

Robert G. Wilson v, Table of n, a(n) for n = 1..10000 with -1 for those entries where a(n) has not yet been found

FORMULA

a(5^k-1) = 5^k.

MATHEMATICA

Do[k = 1; While[PowerMod[4, k, k] != n, k++ ]; Print[k], {n, 30}]

t = Table[0, {10000} ]; k = 1; While[ k < 5000000000, a = PowerMod[4, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* search limits expanded by Robert G. Wilson v, Jul 14 2009 *)

CROSSREFS

Cf. A015950, A036236, A078457, A119679, A127816, A119715, A119714, A127817, A127818, A127819, A127820, A127821.

Sequence in context: A268158 A050645 A048568 * A096682 A009215 A274078

Adjacent sequences:  A119675 A119676 A119677 * A119679 A119680 A119681

KEYWORD

nonn

AUTHOR

Ryan Propper, Jun 12 2006

EXTENSIONS

a(11) <= 2791496231, a(17) <= 140631956671, a(53) <= 52134328061 from Joe K. Crump (joecr(AT)carolina.rr.com), Feb 10 2007

a(11) = 2791496231 from Robert G. Wilson v, Feb 11 2007; confirmed by Ryan Propper, Feb 15 2007

Link corrected by R. J. Mathar, Jul 24 2009

a(83) = 3085807457009 = 113 * 331 * 82501603 from Hagen von Eitzen, Jul 27 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 06:06 EST 2018. Contains 317385 sequences. (Running on oeis4.)