This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Mu

From OeisWiki

Jump to: navigation, search

Index to OEIS: Section Mu


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


Mu Torere: A005655
mu(n): A008683*
mu(n): see Moebius function
MU-numbers: A007335
mult: keyword meaning multiplicative, that is, a(m*n) = a(m)*a(n) whenever g.c.d.(m,n) = 1
multifactorial numbers: A000142, A006882, A007661, A007662, A085157, A085158, A114799, A114800, A114800, A114806.
multigraphs, sequences related to :

multigraphs: (1) A000421, A001374, A001399, A002620, A003082, A004102, A004104, A004105, A005965, A005966, A007717, A014395
multigraphs: (2) A014396, A014397, A014398, A020554, A020555, A020556, A020557, A020558, A020559, A020560, A020561, A020562
multigraphs: (3) A020563, A020564, A020565, A050531, A050532, A050535, A050927, A050929, A050930, A052107, A052108, A052111
multigraphs: (4) A052112, A052113, A052114, A052151, A052152, A052170, A052171, A053400, A053420, A053421, A053465, A053466
multigraphs: (5) A053467, A053468, A053513, A053514, A053515, A053516, A053517, A053588, A063841*, A063842, A063843

Multinomial coefficients:: A005651
multiplication table: A003991*
Multiplication-cost:: A005766
Multiplicative encodings:: A007280, A007188, A007190, A007189, A007338
multiplicative means that a(m*n) = a(m)*a(n) whenever g.c.d.(m,n) = 1
multiplicative order , sequences related to :

multiplicative order of 2 mod n, ord(2,n): A002326
multiplicative order of 10 mod n: A002329, A007732, A070682, A084680, A216415
multiplicative order of m mod n, ord(m, n) where GCD(n,m)=1: A002326, A053446, A053447, A053448, A053449, A053450, A053451, A053452, A053453, A054711
multiplicative order of m mod n, ord(m,n), sequences related to: (1) A037226, A046932, A053006, A053453
multiplicative order of m mod n, ord(m,n), sequences related to: (2) A057764, A059499, A059885, A059886, A059887, A059888, A059889, A059890, A059891, A059892, A059907, A059908
multiplicative order of m mod n, ord(m,n), sequences related to: (3) A059909, A059910, A059911

multiplicative, completely , sequences related to :

multiplicative, completely (00): means that a(m*n) = a(m)*a(n) for all m and n >= 1
multiplicative, completely (01): A000004, A000007, A000012, A000027, A000035, A000265, A000290, A000578, A000583, A000584, A001014, A001015, A001016, A001017, A001477, A003958, A003959, A003960
multiplicative, completely (02): A003961, A003962, A003963, A003964, A003965, A006519, A008454, A008455, A008456, A008836, A010801, A010802, A010803, A010804, A010805, A010806, A010807, A010808
multiplicative, completely (03): A010809, A010810, A010811, A010812, A010813, A011582, A011583, A011584, A011585, A011586, A011587, A011588, A011589, A011590, A011591, A011558, A011592, A011593
multiplicative, completely (04): A011594, A011595, A011596, A011597, A011598, A011599, A011600, A011601, A011602, A011603, A011604, A011605, A011606, A011607, A011608, A011609, A011610, A011611
multiplicative, completely (05): A011612, A011613, A011614, A011615, A011616, A011617, A011618, A011619, A011620, A011621, A011622, A011623, A011624, A011625, A011626, A011627, A011628, A011629
multiplicative, completely (06): A011630, A011631, A028310, A034947, A036987, A038500, A038502, A055975, A057427, A060904, A061109, A061142, A061898, A063524, A064553, A064558, A064614, A064988
multiplicative, completely (07): A064989, A065330, A065331, A065332, A065333, A065338, A065371, A065372, A066260, A066261, A071785, A071786, A072010, A072012, A072026, A072027, A072028, A072029
multiplicative, completely (08): A072084, A072085, A072087, A072436, A072438, A072963, A079065, A079579, A079707, A080891, A086299, A089081, A091684, A091685, A091703, A093709, A098108, A101455
multiplicative, completely (09): A102440, A102441, A108548, A108951, A112347, A113175, A120119, A122261, A123667, A122968-A122971

multiplicative, strongly: see multiplicative, completely
multiplicative, totally: see multiplicative, completely
multiplicatively perfect numbers: A007422*
multiply-perfect numbers: A007539*, A007691*
Multiset: A008284 (of A000012), A033185 (of A000081), A089353 (of A000027), A095133 (of A000055), A201922 (of A001349), A209406 (of A000079), A271878 (of A038055), A271879 (of A038059), A275414 (of A000244), A275416 (of A110654), A275420 (of A005177), A275421 (of A002905), A275431 (of A000108)
music, sequences related to : (see also: The multi-faceted reach of the OEIS#Music)

music: Beethoven: A001491, A054245, A123456
music: Evangelist's Series: A001060
music: Mozart: A064172, A027884, A027885
music: Norgard, Per: A004718*, A005811, A073334, A083866, A135564, A135567, A135689, A135690, A135692, A136004
music: scales: A071831/A071832, A071833 ; A131062, A131071 (Pythagorean scale)

mutinous numbers: A027854
mutually orthogonal Latins squares, see Latin squares, mutually orthogonal
M\"{o}bius: see Moebius function
M\'{e}nage: see permutations, menage and polynomials, menage


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


Personal tools