|
|
A123762
|
|
Number of ways, counted up to symmetry, to build a contiguous building with n LEGO blocks of size 1 X 2.
|
|
64
|
|
|
1, 4, 37, 375, 4493, 56848, 753536, 10283622, 143607345, 2041497919, 29446248496, 429858432108
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..12.
M. Abrahamsen and S. Eilers, On the asymptotic enumeration of LEGO structures, Exper Math. 20 (2) (2011) 145-152.
B. Durhuus and S. Eilers, On the entropy of LEGO, arXiv:math/0504039 [math.CO], 2005.
B. Durhuus and S. Eilers, On the entropy of LEGO, J. Appl. Math. Comput. 45 (1-2) (2014), 433-448.
S. Eilers, A LEGO Counting problem, 2005.
S. Eilers, The LEGO counting problem, Amer. Math. Monthly, 123 (May 2016), 415-426.
Index entry for sequences related to LEGO blocks
|
|
CROSSREFS
|
Cf. A007576, A082679, A112389, A112390.
Sequence in context: A197966 A199690 A133462 * A326014 A220914 A070768
Adjacent sequences: A123759 A123760 A123761 * A123763 A123764 A123765
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Søren Eilers, Oct 29 2006
|
|
STATUS
|
approved
|
|
|
|