

A005589


Number of letters in the (American) English name of n, excluding spaces and hyphens.
(Formerly M2277)


71



4, 3, 3, 5, 4, 4, 3, 5, 5, 4, 3, 6, 6, 8, 8, 7, 7, 9, 8, 8, 6, 9, 9, 11, 10, 10, 9, 11, 11, 10, 6, 9, 9, 11, 10, 10, 9, 11, 11, 10, 5, 8, 8, 10, 9, 9, 8, 10, 10, 9, 5, 8, 8, 10, 9, 9, 8, 10, 10, 9, 5, 8, 8, 10, 9, 9, 8, 10, 10, 9, 7, 10, 10, 12, 11, 11, 10, 12, 12, 11, 6, 9, 9, 11
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Diane Karloff observes (Nov 27 2007) that repeatedly applying the map k>A005589(k) to any starting value n always leads to 4 (cf. A016037, A133418).
For terms beyond a(100), note that this sequence uses the American English style, "one hundred one" (not "one hundred and one"), and the short scale (a billion = 10^9 not 10^12).  M. F. Hasler, Nov 03 2013
Explanation of Diane Karloff's observation above: In many languages there exists a number N, after which all numbers are written with fewer letters than the number itself. N is 4 in English, German and Bulgarian, and 11 in Russian. If in the interval [1,N] there are numbers equal to the number of their letters, then they are attractors. In English and German the only attractor is 4, in Bulgarian 3, in Russian there are two, 3 and 11. In the interval [1,N] there may also exist loops of numbers, for instance 4 and 6 in Bulgarian (6 and 4 letters respectively) or 4,5 and 6 in Russian (6,4 and 5 letters respectively). There are no loops in English, therefore the above observation is true.  Ivan N. Ianakiev, Sep 20 2014


REFERENCES

Problems Drive, Eureka, 37 (1974), 811 and 33.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Ely Golden, Table of n, a(n) for n = 0..11159
Eureka, Problems Drive, Eureka, 37 (1974), 811, 3233, 2427. (Annotated scanned copy)
Ely Golden, Arbitrary precision number naming program in Java
Mathematica Stack Exchange, How to express an integer number in English words?
Landon Curt Noll, The English Name of a Number.
Eric Weisstein's World of Mathematics, Number
Robert G. Wilson v, English names for the numbers from 0 to 11159 without spaces or hyphens .
Index entries for sequences related to number of letters in n


EXAMPLE

Note that A052360(373373) = 64 whereas a(373373) = 56.


MATHEMATICA

inWords[n_] := Module[{r,
numNames = {"", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"},
teenNames = {"ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen"},
tensNames = {"", "ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"},
decimals = {"", "thousand", "million", "billion", "trillion", "quadrillion", "quintillion", "sextillion", "septillion", "octillion", "nonillion", "decillion", "undecillion", "duodecillion", "tredecillion", "quattuordecillion", "quindecillion", "sexdecillion", "septdecillion", "octodecillion", "novemdecillion", "vigintillion", "unvigintillion", "duovigintillion", "trevigintillion", "quattuorvigintillion", "quinvigintillion", "sexvigintillion", "septvigintillion", "octovigintillion", "novemvigintillion", "trigintillion", "untrigintillion", "duotrigintillion"}},
r = If[# != 0, numNames[[# + 1]] <> "hundred"
(* <> If[#2 != 0#3 != 0, " and", ""] *),
""] <> Switch[#2, 0, numNames[[#3 + 1]], 1, teenNames[[#3 + 1]], _, tensNames[[#2 + 1]] <> numNames[[#3 + 1]]] & @@@
(PadLeft[ FromDigits /@ Characters@ StringReverse@#, 3] & /@ StringCases[ StringReverse@ IntegerString@ n, RegularExpression["\\d{1, 3}"]]);
StringJoin@ Reverse@ MapThread[ If[# != "", StringJoin[##], ""] &, {r, Take[decimals, Length@ r]} ]]; (* modified for this sequence from what is presented in the hyperlink and good to 10^102 1 *)
f[n_] := StringLength@ inWords@ n; f[0] = 4; Array[f, 84, 0]
(* Robert G. Wilson v, Nov 04 2007 and revised Mar 31 2015 *)
a[n_] := StringLength[ StringReplace[ IntegerName[n, "Words"], ", "  " "  "\[Hyphen]" > ""]]; a /@ Range[0, 83] (* Mma version >= 10, Giovanni Resta, Apr 10 2017 *)


PROG

(PARI) A005589(n, t=[10^9, #"billion", 10^6, #"million", 1000, #"thousand", 100, #"hundred"])={ n>99 && forstep( i=1, #t, 2, n<t[i] && next; n=divrem(n, t[i]); n[1]>999 && error("n >= ", 1000*t[1], " not yet implemented"); return( A005589(n[1])+t[i+1]+if( n[2], A005589( n[2] )))); if( n<20, #(["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen"][n+1]), #([ "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety" ][n\101])+if( n%10, A005589(n%10)))} \\ M. F. Hasler, Jul 26 2011
(Python)
from num2words import num2words
def a(n):
x=num2words(n).replace(' and ', '')
l=[chr(i) for i in xrange(97, 123)]
return sum([1 for i in x if i in l])
print [a(n) for n in xrange(101)] # Indranil Ghosh, Jul 05 2017


CROSSREFS

Cf. A006944 (ordinals), A052360, A052362, A052363, A134629, A133418, A016037.
Sequence in context: A011762 A195780 A063571 * A052360 A263046 A154913
Adjacent sequences: A005586 A005587 A005588 * A005590 A005591 A005592


KEYWORD

nonn,word,nice,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

Corrected and extended by Larry Reeves (larryr(AT)acm.org) and Allan C. Wechsler, Mar 20 2000
Erroneous bfile deleted by N. J. A. Sloane, Sep 25 2008


STATUS

approved



