login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051193
a(n) = Sum_{k=1..n} lcm(n,k).
11
1, 4, 12, 24, 55, 66, 154, 176, 279, 320, 616, 468, 1027, 910, 1110, 1376, 2329, 1656, 3268, 2320, 3171, 3674, 5842, 3624, 6525, 6136, 7398, 6636, 11803, 6630, 14446, 10944, 12837, 13940, 15820, 12096, 24679, 19570, 21450, 18080, 33661, 18984, 38872, 26884
OFFSET
1,2
LINKS
Akshay Bansal, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Akshay Bansal, C Program.
Soichi Ikeda and Kaneaki Matsuoka, On the Lcm-Sum Function, Journal of Integer Sequences, Vol. 17 (2014), Article 14.1.7.
László Tóth, Weighted gcd-sum functions, J. Integer Sequences, 14 (2011), Article 11.7.7.
FORMULA
a(n) = n*(1+Sum_{d|n} d*phi(d))/2 = n*(1+A057660(n))/2 = n*A057661(n). - Vladeta Jovovic, Jun 21 2002
G.f.: x*f'(x), where f(x) = x/(2*(1 - x)) + (1/2)*Sum_{k>=1} k*phi(k)*x^k/(1 - x^k) and phi() is the Euler totient function (A000010). - Ilya Gutkovskiy, Aug 31 2017
Sum_{k=1..n} a(k) ~ 3 * zeta(3) * n^4 / (4*Pi^2). - Vaclav Kotesovec, May 29 2021
MAPLE
a:=n->add(ilcm( n, j ), j=1..n): seq(a(n), n=1..50); # Zerinvary Lajos, Nov 07 2006
MATHEMATICA
Table[Sum[LCM[k, n], {k, 1, n}], {n, 1, 39}] (* Geoffrey Critzer, Feb 16 2015 *)
f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := n * (1 + Times @@ f @@@ FactorInteger[n])/2; Array[a, 100] (* Amiram Eldar, Apr 26 2023 *)
PROG
(Haskell)
a051193 = sum . a051173_row -- Reinhard Zumkeller, Feb 11 2014
(PARI) a(n) = sum(k=1, n, lcm(n, k)); \\ Michel Marcus, Feb 06 2015
(Python)
from math import prod
from sympy import factorint
def A051193(n): return n*(1+prod((p**((e<<1)+1)+1)//(p+1) for p, e in factorint(n).items())>>1) # Chai Wah Wu, Aug 05 2024
CROSSREFS
Cf. A000010, A018804, A051173 (triangle whose n-th row sum is a(n)), A057660, A057661.
Sequence in context: A037338 A136486 A003203 * A356550 A216244 A215223
KEYWORD
nonn
STATUS
approved