

A127816


a(n) = least k >= 1 such that the remainder when 6^k is divided by k is n.


38



5, 34, 213, 68, 4021227877, 7, 121129, 14, 69, 26, 767, 51, 6191, 22, 201, 20, 1919, 33, 169, 44, 39, 1778, 1926049, 174, 2673413, 50, 63, 451, 1257243481237, 93, 851, 316, 183, 14809, 1969, 38, 1362959, 1826, 177, 289, 65, 87, 5567, 1252, 57, 1651, 6403249
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(7^k1) = 7^k.


LINKS

Table of n, a(n) for n=1..47.
Robert G. Wilson v, Table of n, a(n) for n = 1..10000 with 1 for those entries where a(n) has not yet been found


FORMULA

a(7^k1) = 7^k.


MATHEMATICA

t = Table[0, {10000}]; k = 1; lst = {}; While[k < 5600000000, a = PowerMod[6, k, k]; If[ a<10001 && t[[a]]==0, t[[a]]=k; Print[{a, k}]]; k++ ]; t


CROSSREFS

Cf. A036236, A078457, A119678, A119679, A119715, A119714, A127817, A127818, A127819, A127820, A127821.
Sequence in context: A248373 A121831 A076708 * A024063 A015545 A102436
Adjacent sequences: A127813 A127814 A127815 * A127817 A127818 A127819


KEYWORD

hard,nonn


AUTHOR

Alexander Adamchuk, Jan 30 2007, Feb 05 2007


EXTENSIONS

a(5) <= 20866130267 from Max Alekseyev, Feb 06 2007
a(5) <= 4021227877 from Joe K. Crump (joecr(AT)carolina.rr.com), Feb 10 2007
a(29) <= 1257243481237 from Joe K. Crump (joecr(AT)carolina.rr.com), Feb 09 2007
a(5) through a(28) from Ryan Propper, Feb 21 2007
I combined the two Mathematica codings into one and extended the search limits Robert G. Wilson v, Jul 16 2009
a(29) as conjectured by J. K. Crump confirmed by Hagen von Eitzen, Jul 21 2009
Corrected authorship of the afile  R. J. Mathar, Aug 24 2009


STATUS

approved



