|
|
A050256
|
|
A Diaconis-Mosteller approximation to the Birthday problem function.
|
|
2
|
|
|
16, 86, 185, 307, 448, 606, 778, 965, 1164, 1376, 1599, 1832, 2077, 2331, 2595, 2868, 3150, 3440, 3739, 4047, 4362, 4685, 5016, 5354, 5699, 6052, 6411, 6777, 7150, 7530, 7916, 8309, 8708, 9113, 9524, 9941, 10364, 10793, 11227, 11667
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
LINKS
|
Iain Fox, Table of n, a(n) for n = 2..10000
P. Diaconis and F. Mosteller, Methods of studying coincidences, J. Amer. Statist. Assoc. 84 (1989), pp. 853-861.
Eric Weisstein's World of Mathematics, Birthday Problem
|
|
FORMULA
|
a(n) = floor(47*(n-1.5)^(3/2)). - Derek Orr, Sep 05 2015
|
|
PROG
|
(PARI) vector(50, n, n++; floor(47*(n-1.5)^(3/2))) \\ Derek Orr, Sep 05 2015
(PARI) a(n) = floor(47*(n-1.5)^1.5) \\ Charles R Greathouse IV, Sep 05 2015
|
|
CROSSREFS
|
Cf. A014088, A050255.
Sequence in context: A118675 A223962 A252834 * A223835 A224143 A225007
Adjacent sequences: A050253 A050254 A050255 * A050257 A050258 A050259
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Eric W. Weisstein
|
|
EXTENSIONS
|
First term removed by Derek Orr, Sep 05 2015
Offset corrected by Iain Fox, Nov 16 2017
|
|
STATUS
|
approved
|
|
|
|