|
|
A036952
|
|
Numbers whose binary expansion is a decimal prime.
|
|
55
|
|
|
3, 5, 23, 47, 89, 101, 149, 157, 163, 173, 179, 185, 199, 229, 247, 253, 295, 313, 329, 331, 355, 367, 379, 383, 405, 425, 443, 453, 457, 471, 523, 533, 539, 565, 583, 587, 595, 631, 643, 647, 653, 659, 671, 675, 689, 703, 709, 755, 781, 785, 815, 841, 855
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A100051(f(a(n))) = 1 with f(x) = if x<2 then x else 10*f(floor(x/2)) + x mod 2. - Reinhard Zumkeller, Mar 31 2010
|
|
LINKS
|
K. D. Bajpai, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
1 = 1_2 is not a prime.
2 = 10_2 is not OK because 10 = 2*5 is not a prime.
3 = 11_2 is OK because 11 is a prime.
4 = 100_2 is not OK because 100 = 4*25 is not a prime.
5 = 101_2 is OK because 101 is a prime.
7 = 111_2 is not OK because 111 = 3*37.
11 = 1011_2 is not OK because 1011 = 3*337.
313 = 100111001_2 is OK because 100111001 is prime.
|
|
MAPLE
|
A007088 := proc(n)
dgs := convert(n, base, 2) ;
add(op(i, dgs)*10^(i-1), i=1..nops(dgs)) ;
end proc:
isA036952 := proc(n)
isprime( A007088(n)) :
end proc:
A036952 := proc(n)
if n =1 then
3;
else
for a from procname(n-1)+1 do
if isA036952(a) then
return a ;
end if;
end do:
end if;
end proc:
seq(A036952(n), n=1..80) ;
# R. J. Mathar, Mar 12 2010
A036952 := proc() if isprime(convert(n, binary)) then RETURN (n); fi; end: seq(A036952(), n=1..1000); # K. D. Bajpai, Jul 04 2014
|
|
MATHEMATICA
|
f[n_, k_]:=FromDigits[IntegerDigits[n, k]]; lst={}; Do[If[PrimeQ[f[n, 2]], AppendTo[lst, n]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 12 2010 *)
NestList[NestWhile[# + 2 &, #, ! PrimeQ[FromDigits[IntegerDigits[#2, 2]]] &, 2] &, 3, 52] (* Jan Mangaldan, Jul 02 2020 *)
|
|
PROG
|
(PARI) is(n)=my(v=binary(n)); isprime(sum(i=1, #v, v[i]*10^(#v-i))) \\ Charles R Greathouse IV, Jun 28 2013
|
|
CROSSREFS
|
Cf. A020449, A036953-A036964.
Union of A156059 and A065720.
Sequence in context: A199336 A214876 A280273 * A065720 A148554 A120937
Adjacent sequences: A036949 A036950 A036951 * A036953 A036954 A036955
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Patrick De Geest, Jan 04 1999
|
|
EXTENSIONS
|
Entry revised by R. J. Mathar and N. J. A. Sloane, Mar 12 2010
|
|
STATUS
|
approved
|
|
|
|