This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A020449 Primes that contain digits 0 and 1 only. 122
 11, 101, 10111, 101111, 1011001, 1100101, 10010101, 10011101, 10100011, 10101101, 10110011, 10111001, 11000111, 11100101, 11110111, 11111101, 100100111, 100111001, 101001001, 101001011, 101100011, 101101111, 101111011, 101111111 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes which are the sums of distinct powers of 10. - Amarnath Murthy, Nov 19 2002 Subsequence of A007088. - Michel Marcus, Dec 18 2015 LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 MAPLE N:= 10: # to get all entries with <= N digits S:= {}: for d from 1 to N-1 do   S:= S union select(isprime, map(`+`, map(convert, combinat[powerset]({seq(10^i, i=0..d-1)}), `+`), 10^d)); od: S; # if using Maple 11 or earlier, uncomment the next line # sort(convert(%, list)); # Robert Israel, May 04 2015 MATHEMATICA Flatten[Table[Select[FromDigits/@Tuples[{0, 1}, n], PrimeQ], {n, 9}]] (* Vincenzo Librandi, Jul 27 2012 *) PROG (MAGMA) [p: p in PrimesUpTo(101111111) | Set(Intseq(p)) subset [0, 1]]; // Vincenzo Librandi, Jul 27 2012 (PARI) is(n)=isprime(n)&&vecmax(digits(n))==1 \\ Charles R Greathouse IV, Jul 01 2013 (Python) import sympy def check10(a): ....b=[int(i) for i in list(set(list(str(a))))] ....return(set(b).issubset(c)) n=2 while n>1: ....if check10(n)==True: ........print(n) ....n=sympy.nextprime(n) \\ Abhiram R Devesh, May 04 2015 (Python) from sympy import isprime A020449_list = [n for n in (int(format(m, 'b')) for m in range(1, 2**10)) if isprime(n)] # Chai Wah Wu, Dec 17 2015 CROSSREFS Cf. A007088, A036952. Sequence in context: A064490 A080439 A098153 * A089971 A082620 A199304 Adjacent sequences:  A020446 A020447 A020448 * A020450 A020451 A020452 KEYWORD nonn,base AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.