The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023416 Number of 0's in binary expansion of n. 203
 1, 0, 1, 0, 2, 1, 1, 0, 3, 2, 2, 1, 2, 1, 1, 0, 4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 5, 4, 4, 3, 4, 3, 3, 2, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Another version (A080791) has a(0) = 0. LINKS N. J. A. Sloane, Table of n, a(n) for n = 0..10000 F. T. Adams-Watters, F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009) 09.5.6 J.-P. Allouche, J. O. Shallit, Infinite products associated with counting blocks in binary strings, J. London Math. Soc.39 (1989) 193-204. K. Hessami Pilehrood, T. Hessami Pilehrood, Vacca-Type Series for Values of the Generalized Euler Constant Function and its Derivative, J. Integer Sequences, 13 (2010), #10.7.3. Vladimir Shevelev, The number of permutations with prescribed up-down structure as a function of two variables, INTEGERS, 12 (2012), #A1. - From N. J. A. Sloane, Feb 07 2013 Ralf Stephan, Some divide-and-conquer sequences ... Ralf Stephan, Table of generating functions Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003. FORMULA a(n) = 1, if n = 0; 0, if n = 1; a(n/2)+1 if n even; a((n-1)/2) if n odd. a(n) = 1 - (n mod 2) + a(floor(n/2)). - Marc LeBrun, Jul 12 2001 G.f.: 1 + 1/(1-x) * Sum_{k>=0} x^(2^(k+1))/(1+x^2^k). - Ralf Stephan, Apr 15 2002 a(n) = A070939(n) - A000120(n). a(n) = A008687(n+1) - 1. a(n) = A000120(A035327(n)). From Hieronymus Fischer, Jun 12 2012: (Start) a(n) = m + 1 + Sum_{j=1..m+1} (floor(n/2^j) - floor(n/2^j + 1/2)), where m=floor(log_2(n)). General formulas for the number of digits <= d in the base p representation n, where 0 <= d < p. a(n) = m + 1 + Sum_{j=1..m+1} (floor(n/p^j) - floor(n/p^j + (p-d-1)/p)), where m=floor(log_p(n)). G.f.: g(x) = 1 + (1/(1-x))*Sum_{j>=0} (1-x^(d*p^j))*x^p^j) + (1-x^p^j)*x^p^(j+1)/(1-x^p^(j+1)). (End) Product_{n>=1} ((2*n)/(2*n+1))^((-1)^a(n)) = sqrt(2)/2 (A010503) (see Allouche & Shallit link). - Michel Marcus, Aug 31 2014 MAPLE A023416 := proc(n)     if n = 0 then         1;     else         add(1-e, e=convert(n, base, 2)) ;     end if; end proc: # R. J. Mathar, Jul 21 2012 MATHEMATICA Table[ Count[ IntegerDigits[n, 2], 0], {n, 0, 100} ] DigitCount[Range[0, 110], 2, 0] (* Harvey P. Dale, Jan 10 2013 *) PROG (Haskell) a023416 0 = 1 a023416 1 = 0 a023416 n = a023416 n' + 1 - m where (n', m) = divMod n 2 a023416_list = 1 : c [0] where c (z:zs) = z : c (zs ++ [z+1, z]) -- Reinhard Zumkeller, Feb 19 2012, Jun 16 2011, Mar 07 2011 (PARI) a(n)=if(n==0, 1, n=binary(n); sum(i=1, #n, !n[i])) \\ Charles R Greathouse IV, Jun 10 2011 (PARI) a(n)=if(n==0, 1, #binary(n)-hammingweight(n)) \\ Charles R Greathouse IV, Nov 20 2012 (PARI) a(n) = if(n == 0, 1, 1+logint(n, 2) - hammingweight(n))  \\ Gheorghe Coserea, Sep 01 2015 CROSSREFS The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015, A070939, A083652. Partial sums see A059015. With initial zero and shifted right, same as A080791. Cf. A055641 (for base 10). Sequence in context: A116382 A050606 A277721 * A080791 A336361 A334204 Adjacent sequences:  A023413 A023414 A023415 * A023417 A023418 A023419 KEYWORD nonn,nice,easy,base AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 26 03:21 EDT 2020. Contains 338027 sequences. (Running on oeis4.)