login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091512 2^a(n) divides (2*n)^n: exponent of 2 in (2*n)^n. 10
1, 4, 3, 12, 5, 12, 7, 32, 9, 20, 11, 36, 13, 28, 15, 80, 17, 36, 19, 60, 21, 44, 23, 96, 25, 52, 27, 84, 29, 60, 31, 192, 33, 68, 35, 108, 37, 76, 39, 160, 41, 84, 43, 132, 45, 92, 47, 240, 49, 100, 51, 156, 53, 108, 55, 224, 57, 116, 59, 180, 61, 124, 63 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

n times one more than the trailing 0's in the binary representation of n. - Ralf Stephan, Aug 22 2013

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Index entries for sequences related to binary expansion of n

FORMULA

a(n) = A007814(A000312(n)) = n*A001511(n) = A069895(n)/2.

G.f.: sum(k>=0, 2^k*x^2^k/(1-x^2^k)^2).

Recurrence: a(0) = 0, a(2*n) = 2*a(n) + 2*n, a(2*n+1) = 2*n+1.

Dirichlet g.f.: zeta(s-1)*2^s/(2^s-2). - Ralf Stephan, Jun 17 2007

Mobius transform of A162728, where x/(1-x)^2 = Sum_{n>=1} A162728(n)*x^n/(1+x^n). - Paul D. Hanna, Jul 12 2009

a(n) = A162728(2*n)/phi(2*n), where x/(1-x)^2 = Sum_{n>=1} A162728(n)*x^n/(1+x^n). - Paul D. Hanna, Jul 12 2009

a((2*n-1)*2^p) = (2*n-1)*(p+1)*2^p, p >= 0. Observe that a(2^p) = A001787(p+1). - Johannes W. Meijer, Feb 08 2013

MAPLE

nmax:=63: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (2*n-1)*(p+1)*2^p od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 08 2013

MATHEMATICA

Table[ Part[ Flatten[ FactorInteger[(2 n)^n]], 2], {n, 1, 124}]

Table[IntegerExponent[(2n)^n, 2], {n, 70}] (* Harvey P. Dale, Sep 11 2015 *)

PROG

(PARI) a(n)=n*(valuation(n, 2)+1)

(PARI) a(n)=if(n<1, 0, if(n%2==0, 2*a(n/2)+n, n))

(MAGMA) [n*(Valuation(n, 2)+1): n in [1..80]]; // Vincenzo Librandi, May 16 2013

CROSSREFS

Cf. A091519, A090740, A090739, A162728, A220466.

Sequence in context: A269718 A099377 A121844 * A106285 A240134 A193800

Adjacent sequences:  A091509 A091510 A091511 * A091513 A091514 A091515

KEYWORD

nonn,mult,easy,changed

AUTHOR

Ralf Stephan and Labos Elemer, Jan 18 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 14:53 EST 2018. Contains 299380 sequences. (Running on oeis4.)