The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091512 2^a(n) divides (2*n)^n: exponent of 2 in (2*n)^n. 10
 1, 4, 3, 12, 5, 12, 7, 32, 9, 20, 11, 36, 13, 28, 15, 80, 17, 36, 19, 60, 21, 44, 23, 96, 25, 52, 27, 84, 29, 60, 31, 192, 33, 68, 35, 108, 37, 76, 39, 160, 41, 84, 43, 132, 45, 92, 47, 240, 49, 100, 51, 156, 53, 108, 55, 224, 57, 116, 59, 180, 61, 124, 63 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS n times one more than the trailing 0's in the binary representation of n. - Ralf Stephan, Aug 22 2013 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A007814(A000312(n)) = n*A001511(n) = A069895(n)/2. G.f.: sum(k>=0, 2^k*x^2^k/(1-x^2^k)^2). Recurrence: a(0) = 0, a(2*n) = 2*a(n) + 2*n, a(2*n+1) = 2*n+1. Dirichlet g.f.: zeta(s-1)*2^s/(2^s-2). - Ralf Stephan, Jun 17 2007 Mobius transform of A162728, where x/(1-x)^2 = Sum_{n>=1} A162728(n)*x^n/(1+x^n). - Paul D. Hanna, Jul 12 2009 a(n) = A162728(2*n)/phi(2*n), where x/(1-x)^2 = Sum_{n>=1} A162728(n)*x^n/(1+x^n). - Paul D. Hanna, Jul 12 2009 a((2*n-1)*2^p) = (2*n-1)*(p+1)*2^p, p >= 0. Observe that a(2^p) = A001787(p+1). - Johannes W. Meijer, Feb 08 2013 MAPLE nmax:=63: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (2*n-1)*(p+1)*2^p od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 08 2013 MATHEMATICA Table[ Part[ Flatten[ FactorInteger[(2 n)^n]], 2], {n, 1, 124}] Table[IntegerExponent[(2n)^n, 2], {n, 70}] (* Harvey P. Dale, Sep 11 2015 *) PROG (PARI) a(n)=n*(valuation(n, 2)+1) (PARI) a(n)=if(n<1, 0, if(n%2==0, 2*a(n/2)+n, n)) (MAGMA) [n*(Valuation(n, 2)+1): n in [1..80]]; // Vincenzo Librandi, May 16 2013 CROSSREFS Cf. A091519, A090740, A090739, A162728, A220466. Sequence in context: A269718 A099377 A121844 * A106285 A240134 A193800 Adjacent sequences:  A091509 A091510 A091511 * A091513 A091514 A091515 KEYWORD nonn,mult,easy AUTHOR Ralf Stephan and Labos Elemer, Jan 18 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 05:50 EDT 2020. Contains 336290 sequences. (Running on oeis4.)