login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005633
Bishops on an n X n board (see Robinson paper for details).
(Formerly M0376)
1
0, 1, 0, 2, 2, 8, 14, 36, 112, 216, 928, 1440, 8616, 11520, 87864, 100800, 997952, 1008000, 12427904, 10886400, 169435936, 130636800, 2501216992, 1676505600, 39837528576, 23471078400, 679494214656, 348713164800, 12370158205568, 5579410636800, 239109033342848
OFFSET
1,4
REFERENCES
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence mu(n).]
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
MAPLE
For Maple program see A005635.
MATHEMATICA
d[n_] := d[n] = If[n <= 1, 1, d[n - 1] + (n - 1)*d[n - 2]];
M[n_] := Module[{k}, If[Mod[n, 2] == 0, k = n/2; If[Mod[k, 2] == 0, Return[k!*(k + 2)/2], Return[(k - 1)!*(k + 1)^2/2]], k = (n - 1)/2; Return[d[k]*d[k + 1]]]];
B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n - 1], True, 2*B[n - 2] + (n - 2)*B[n - 4]];
S[n_] := S[n] = Module[{k}, If[Mod[n, 2]==0, 0, k = (n-1)/2; B[k]*B[k+1]]];
a[n_] := (M[n] - S[n])/2;
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jul 23 2022, after Maple program in A005635 *)
CROSSREFS
Sequence in context: A045686 A045677 A280399 * A228661 A369316 A026585
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from N. J. A. Sloane, Sep 28 2006
STATUS
approved