OFFSET
1,4
REFERENCES
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence mu(n).]
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
MAPLE
For Maple program see A005635.
MATHEMATICA
d[n_] := d[n] = If[n <= 1, 1, d[n - 1] + (n - 1)*d[n - 2]];
M[n_] := Module[{k}, If[Mod[n, 2] == 0, k = n/2; If[Mod[k, 2] == 0, Return[k!*(k + 2)/2], Return[(k - 1)!*(k + 1)^2/2]], k = (n - 1)/2; Return[d[k]*d[k + 1]]]];
B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n - 1], True, 2*B[n - 2] + (n - 2)*B[n - 4]];
S[n_] := S[n] = Module[{k}, If[Mod[n, 2]==0, 0, k = (n-1)/2; B[k]*B[k+1]]];
a[n_] := (M[n] - S[n])/2;
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jul 23 2022, after Maple program in A005635 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from N. J. A. Sloane, Sep 28 2006
STATUS
approved