This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001983 Numbers that are the sum of 2 distinct squares: of form x^2 + y^2 with 0 <= x < y. 12
 1, 4, 5, 9, 10, 13, 16, 17, 20, 25, 26, 29, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58, 61, 64, 65, 68, 73, 74, 80, 81, 82, 85, 89, 90, 97, 100, 101, 104, 106, 109, 113, 116, 117, 121, 122, 125, 130, 136, 137, 144, 145, 146, 148, 149, 153, 157, 160, 164 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A025435(a(n)) > 0. - Reinhard Zumkeller, Dec 20 2013 This sequence lists the values of A000404(n)/2 when A000404(n) is an even number. In other words, sequence lists integers n that are the average of two nonzero squares. - Altug Alkan, May 26 2016 LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 G. Xiao, Two squares MATHEMATICA upto=200; max=Floor[Sqrt[upto]]; s=Total/@((Subsets[Range[0, max], {2}])^2); Union[Select[s, #<=upto&]]  (* Harvey P. Dale, Apr 01 2011 *) selQ[n_] := Select[ PowersRepresentations[n, 2, 2], 0 <= #[[1]] < #[[2]] &] != {}; Select[Range[200], selQ] (* Jean-François Alcover, Oct 03 2013 *) PROG (Haskell) a001983 n = a001983_list !! (n-1) a001983_list = [x | x <- [0..], a025435 x > 0] -- Reinhard Zumkeller, Dec 20 2013 (PARI) list(lim)=my(v=List()); for(x=0, sqrtint(lim\4), for(y=x+1, sqrtint(lim\1-x^2), listput(v, x^2+y^2))); Set(v) \\ Charles R Greathouse IV, Feb 07 2017 CROSSREFS Cf. A000404, subsequence of A001481, A004435 (complement), A025435. Sequence in context: A003995 A064473 A287962 * A143575 A047208 A177887 Adjacent sequences:  A001980 A001981 A001982 * A001984 A001985 A001986 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 05:51 EDT 2019. Contains 328044 sequences. (Running on oeis4.)