login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008440 Expansion of Jacobi theta constant theta_2^6 /(64q^(3/2)). 17
1, 6, 15, 26, 45, 66, 82, 120, 156, 170, 231, 276, 290, 390, 435, 438, 561, 630, 651, 780, 861, 842, 1020, 1170, 1095, 1326, 1431, 1370, 1716, 1740, 1682, 2016, 2145, 2132, 2415, 2550, 2353, 2850, 3120, 2810, 3321, 3486, 3285, 3906, 4005, 3722, 4350 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of representations of n as sum of 6 triangular numbers. - Michel Marcus, Oct 24 2012. See the Ono et al. link.

REFERENCES

B. C. Berndt, Fragments by Ramanujan on Lambert series, in Number Theory and Its Applications, K. Gyory and S. Kanemitsu, eds., Kluwer, Dordrecht, 1999, pp. 35-49, see Entry 6.

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)

B. C. Berndt, Fragments by Ramanujan on Lambert series.

K. Ono, S. Robins and P. T. Wahl, On the representation of integers as sums of triangular numbers, Aequationes mathematicae, August 1995, Volume 50, Issue 1-2, pp 73-94. Theorem 4.

FORMULA

Expansion of Ramanujan phi^6(q) in powers of q.

Expansion of q^(-3/4)(eta(q^2)^2/eta(q))^6 in powers of q.

Euler transform of period 2 sequence [ 6, -6, ...]. - Michael Somos, May 23 2006

G.f.: (Sum_{n>=0} x^((n^2+n)/2))^6.

a(n) = (-1/8)*Sum_{d divides (4n+3)} Chi_2(4;d)*d^2. - Michel Marcus, Oct 24 2012. See the Ono et al. link. Theorem 4.

a(n) =(-1/8)*A002173(4*n+3). This is the preceding formula. - Wolfdieter Lang, Jan 12 2017

a(0) = 1, a(n) = (6/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017

G.f.: exp(Sum_{k>=1} 6*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017

EXAMPLE

q^3 + 6*q^7 + 15*q^11 + 26*q^15 + 45*q^19 + 66*q^23 + 82*q^27 + ...

MATHEMATICA

CoefficientList[(QPochhammer[q^2]^2 / QPochhammer[q])^6 + O[q]^50, q] (* Jean-Fran├žois Alcover, Nov 05 2015 *)

PROG

(PARI) {a(n)=if(n<0, 0, polcoeff( sum(k=0, (sqrtint(8*n+1)-1)\2, x^((k^2+k)/2), x*O(x^n))^6, n))} /* Michael Somos, May 23 2006 */

(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)^2/eta(x+A))^6, n))} /* Michael Somos, May 23 2006 */

(PARI) {a(n)= -sumdiv(4*n+3, d, real(I^(d-1))*d^2)/8} /* Michael Somos, Oct 24 2012 */

CROSSREFS

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809, A002173.

Sequence in context: A222170 A151762 A213791 * A284629 A022601 A112150

Adjacent sequences:  A008437 A008438 A008439 * A008441 A008442 A008443

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 22:38 EST 2019. Contains 320328 sequences. (Running on oeis4.)