login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A008440
Expansion of Jacobi theta constant theta_2^6 /(64q^(3/2)).
19
1, 6, 15, 26, 45, 66, 82, 120, 156, 170, 231, 276, 290, 390, 435, 438, 561, 630, 651, 780, 861, 842, 1020, 1170, 1095, 1326, 1431, 1370, 1716, 1740, 1682, 2016, 2145, 2132, 2415, 2550, 2353, 2850, 3120, 2810, 3321, 3486, 3285, 3906, 4005, 3722, 4350
OFFSET
0,2
COMMENTS
Number of representations of n as sum of 6 triangular numbers. - Michel Marcus, Oct 24 2012. See the Ono et al. link.
REFERENCES
B. C. Berndt, Fragments by Ramanujan on Lambert series, in Number Theory and Its Applications, K. Gyory and S. Kanemitsu, eds., Kluwer, Dordrecht, 1999, pp. 35-49, see Entry 6.
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)
K. Ono, S. Robins and P. T. Wahl, On the representation of integers as sums of triangular numbers, Aequationes mathematicae, August 1995, Volume 50, Issue 1-2, pp 73-94. Theorem 4.
FORMULA
Expansion of Ramanujan phi^6(q) in powers of q.
Expansion of q^(-3/4)(eta(q^2)^2/eta(q))^6 in powers of q.
Euler transform of period 2 sequence [6, -6, ...]. - Michael Somos, May 23 2006
G.f.: (Sum_{n>=0} x^((n^2+n)/2))^6.
a(n) = (-1/8)*Sum_{d divides (4n+3)} Chi_2(4;d)*d^2. - Michel Marcus, Oct 24 2012. See the Ono et al. link. Theorem 4.
a(n) =(-1/8)*A002173(4*n+3). This is the preceding formula. - Wolfdieter Lang, Jan 12 2017
a(0) = 1, a(n) = (6/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 6*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017
EXAMPLE
G.f. = 1 + 6*x + 15*x^2 + 26*x^3 + 45*x^4 + 66*x^5 + 82*x^6 + ... - Michael Somos, Jun 25 2019
G.f. = q^3 + 6*q^7 + 15*q^11 + 26*q^15 + 45*q^19 + 66*q^23 + 82*q^27 + ...
MATHEMATICA
CoefficientList[(QPochhammer[q^2]^2 / QPochhammer[q])^6 + O[q]^50, q] (* Jean-François Alcover, Nov 05 2015 *)
a[ n_] := If[ n < 0, 0, -DivisorSum[ 4 n + 3, Re[I^(# - 1)] #^2 &] / 8]; (* Michael Somos, Jun 25 2019 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(8*n+1)-1)\2, x^((k^2+k)/2), x * O(x^n))^6, n))}; /* Michael Somos, May 23 2006 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A))^6, n))}; /* Michael Somos, May 23 2006 */
(PARI) {a(n)= -sumdiv(4*n + 3, d, real(I^(d-1))*d^2)/8}; /* Michael Somos, Oct 24 2012 */
CROSSREFS
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809, A002173.
Sequence in context: A222170 A151762 A213791 * A340962 A284629 A022601
KEYWORD
nonn,easy
STATUS
approved