login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008437 Expansion of Jacobi theta constant theta_2^3 /8. 3
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,12

COMMENTS

Number of ways of writing n as the sum of three odd positive squares.

REFERENCES

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..10000

J. E. Jones [Lennard-Jones] and A. E. Ingham, On the calculation of certain crystal potential constants and on the cubic crystal of least potential energy, Proc. Royal Soc., A 107 (1925), 636-653 (see p. 650).

EXAMPLE

From Antti Karttunen, Jul 24 2017: (Start)

a(19) = 3 as 19 = 1+9+9 = 9+1+9 = 9+9+1.

a(27) = 4 as 27 = 1+1+25 = 1+25+1 = 25+1+1 = 9+9+9.

(End)

PROG

(Scheme) (define (A008437 n) (cond ((< n 3) 0) ((even? n) 0) (else (let loop ((k (- (A000196 n) (modulo (+ 1 (A000196 n)) 2))) (s 0)) (if (< k 1) s (loop (- k 2) (+ s (A290081 (- n (* k k)))))))))) ;; Antti Karttunen, Jul 24 2017

CROSSREFS

Equals A085121/8.

Cf. A000004 (the even bisection), A000196, A290081.

Sequence in context: A171063 A318673 A151795 * A151755 A181004 A051344

Adjacent sequences:  A008434 A008435 A008436 * A008438 A008439 A008440

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 06:59 EST 2019. Contains 319188 sequences. (Running on oeis4.)