This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008442 Expansion of Jacobi theta constant (theta_2(2z))^2/4. 5
 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). a(n) is the number of ways of writing 2n as the sum of two odd positive squares. (Cf. A290081 & A008441). - Antti Karttunen, Jul 24 2017 REFERENCES J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102. N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.26). LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Fine gives an explicit formula for a(n) in terms of the divisors of n. a(n) = number of divisors of n of form 8n+1, 8n+5, 8n+6 minus number of divisors of form 8n+2, 8n+3, 8n+7. [I think Fine's version is simpler - N. J. A. Sloane] G.f. = s(8)^4/(s(4)^2), where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine] Expansion of q * psi(q^4)^2 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Feb 22 2015 Expansion of eta(q^8)^4 / eta(q^4)^2 in powers of q. Euler transform of period 8 sequence [ 0, 0, 0, 2, 0, 0, 0, -2, ...]. - Michael Somos, Apr 24 2004 a(n)=0 unless n=4k+1 in which case a(n) is the difference between number of divisors of n of form 4k+1 and 4k+3. Multiplicative with a(2^e) = 0^e, a(p^e) = (1 + (-1)^e)/2 if p==3 mod 4 otherwise a(p^e) = 1+e. - Michael Somos, Sep 18 2004 Moebius transform is period 8 sequence [ 1, -1, -1, 0, 1, 1, -1, 0, ...]. - Michael Somos, Sep 02 2005 G.f.: Sum_{k>0} kronecker(-4, k) * x^k / (1 - x^(2*k)) = Sum_{k>0} x^(2*k - 1) / (1 + x^(4*k - 2)). - Michael Somos, Sep 20 2005 G.f.: Sum_{k>0} x^k * (1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) / (1 - x^(8*k)) = x Product_{k>0} (1 - x^(8*k))^4 / (1 - x^(4*k))^2. - Michael Somos, Apr 24 2004 a(4*n + 1) = A008441(n). EXAMPLE G.f. = q + 2*q^5 + q^9 + 2*q^13 + 2*q^17 + 3*q^25 + 2*q^29 + 2*q^37 + ... MATHEMATICA a[n_] := Sum[{0, 1, -1, -1, 0, 1, 1, -1}[[Mod[d, 8] + 1]], {d, Divisors[n]}]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, May 15 2013, after Michael Somos *) a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^2]^2 / 4, {x, 0, n}]; (* Michael Somos, Feb 22 2015 *) a[ n_] := If[ n < 1 || Mod[n, 4] != 1, 0, Sum[ KroneckerSymbol[ 4, d], {d, Divisors @n}]]; (* Michael Somos, Feb 22 2015 *) PROG (PARI) {a(n) = if( n<1 || n%4!=1, 0, sumdiv(n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Apr 24 2004 */ (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -1, -1, 0, 1, 1, -1][d%8+1]))}; /* Michael Somos, Apr 24 2004 */ (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^8 + A)^4 / eta(x^4 + A)^2, n))}; /* Michael Somos, Apr 24 2004 */ (MAGMA) A := Basis( ModularForms( Gamma1(16), 1), 106); A[2] + 2*A[6]; /* Michael Somos, Feb 22 2015 */ CROSSREFS Cf. A008441. Even bisection of A290081. Sequence in context: A279255 A055029 A126812 * A285720 A269175 A086076 Adjacent sequences:  A008439 A008440 A008441 * A008443 A008444 A008445 KEYWORD nonn,mult AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 19 16:10 EST 2017. Contains 294936 sequences.