login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008442 Expansion of Jacobi theta constant (theta_2(2z))^2/4. 5
1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

a(n) is the number of ways of writing 2n as the sum of two odd positive squares. (Cf. A290081 & A008441). - Antti Karttunen, Jul 24 2017

REFERENCES

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.

N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.26).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Fine gives an explicit formula for a(n) in terms of the divisors of n.

a(n) = number of divisors of n of form 8n+1, 8n+5, 8n+6 minus number of divisors of form 8n+2, 8n+3, 8n+7. [I think Fine's version is simpler - N. J. A. Sloane]

G.f. = s(8)^4/(s(4)^2), where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine]

Expansion of q * psi(q^4)^2 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Feb 22 2015

Expansion of eta(q^8)^4 / eta(q^4)^2 in powers of q.

Euler transform of period 8 sequence [ 0, 0, 0, 2, 0, 0, 0, -2, ...]. - Michael Somos, Apr 24 2004

a(n)=0 unless n=4k+1 in which case a(n) is the difference between number of divisors of n of form 4k+1 and 4k+3.

Multiplicative with a(2^e) = 0^e, a(p^e) = (1 + (-1)^e)/2 if p==3 mod 4 otherwise a(p^e) = 1+e. - Michael Somos, Sep 18 2004

Moebius transform is period 8 sequence [ 1, -1, -1, 0, 1, 1, -1, 0, ...]. - Michael Somos, Sep 02 2005

G.f.: Sum_{k>0} kronecker(-4, k) * x^k / (1 - x^(2*k)) = Sum_{k>0} x^(2*k - 1) / (1 + x^(4*k - 2)). - Michael Somos, Sep 20 2005

G.f.: Sum_{k>0} x^k * (1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) / (1 - x^(8*k)) = x Product_{k>0} (1 - x^(8*k))^4 / (1 - x^(4*k))^2. - Michael Somos, Apr 24 2004

a(4*n + 1) = A008441(n).

EXAMPLE

G.f. = q + 2*q^5 + q^9 + 2*q^13 + 2*q^17 + 3*q^25 + 2*q^29 + 2*q^37 + ...

MATHEMATICA

a[n_] := Sum[{0, 1, -1, -1, 0, 1, 1, -1}[[Mod[d, 8] + 1]], {d, Divisors[n]}]; Table[a[n], {n, 1, 105}] (* Jean-Fran├žois Alcover, May 15 2013, after Michael Somos *)

a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^2]^2 / 4, {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)

a[ n_] := If[ n < 1 || Mod[n, 4] != 1, 0, Sum[ KroneckerSymbol[ 4, d], {d, Divisors @n}]]; (* Michael Somos, Feb 22 2015 *)

PROG

(PARI) {a(n) = if( n<1 || n%4!=1, 0, sumdiv(n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Apr 24 2004 */

(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -1, -1, 0, 1, 1, -1][d%8+1]))}; /* Michael Somos, Apr 24 2004 */

(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^8 + A)^4 / eta(x^4 + A)^2, n))}; /* Michael Somos, Apr 24 2004 */

(MAGMA) A := Basis( ModularForms( Gamma1(16), 1), 106); A[2] + 2*A[6]; /* Michael Somos, Feb 22 2015 */

CROSSREFS

Cf. A008441.

Even bisection of A290081.

Sequence in context: A279255 A055029 A126812 * A285720 A269175 A086076

Adjacent sequences:  A008439 A008440 A008441 * A008443 A008444 A008445

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 16:10 EST 2017. Contains 294936 sequences.