login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024508 Numbers that are a sum of 2 distinct nonzero squares in more than one way. 9
65, 85, 125, 130, 145, 170, 185, 205, 221, 250, 260, 265, 290, 305, 325, 340, 365, 370, 377, 410, 425, 442, 445, 481, 485, 493, 500, 505, 520, 530, 533, 545, 565, 580, 585, 610, 625, 629, 650, 680, 685, 689, 697, 725, 730, 740, 745, 754, 765, 785, 793, 820, 845, 850, 865, 884, 890, 901, 905, 925, 949, 962, 965, 970, 985, 986, 1000, 1010, 1025, 1037, 1040, 1060, 1066, 1073, 1090, 1105, 1125 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Appears to be n such that sigma(n)==0 (mod 4) and n is expressible as a sum of 2 squares. - Benoit Cloitre, Apr 20 2003

The comment that is in above is true most of the time. However if number of odd divisors of n that is a term of this sequence is not divisible by 4, then sigma(n) cannot be divisible by 4. For example; 325, 425, 625, 650, ... See also A000443 for more related examples. - Altug Alkan, Jun 09 2016

If m is a term then (a^2 + b^2) * m is a term for a,b > 0. Hence this sequence is closed under multiplication. - David A. Corneth, Jun 10 2016

LINKS

David A. Corneth, Table of n, a(n) for n = 1..10749

G. Xiao, Two squares

Index entries for sequences related to sums of squares

MATHEMATICA

lst={}; q=-1; k=1; Do[Do[x=a^2; Do[y=b^2; If[x+y==n, If[n==q&&k==1, AppendTo[lst, n]]; If[n!=q, q=n; k=1, k++ ]], {b, Floor[(n-x)^(1/2)], a+1, -1}], {a, Floor[n^(1/2)], 1, -1}], {n, 2*6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 22 2009 *)

PROG

(PARI) is(n) = {my(t=0, i); t=sum(i=1, sqrtint((n-1)\2), issquare(n-i^2)); t>1} \\ David A. Corneth, Jun 10 2016

(PARI) is(n)=if(n<9, return(0)); my(v=valuation(n, 2), f=factor(n>>v), t=1); for(i=1, #f[, 1], if(f[i, 1]%4==1, t*=f[i, 2]+1, if(f[i, 2]%2, return(0)))); if(t%2, t-(-1)^v, t)/2-issquare(n/2)>1 \\ Charles R Greathouse IV, Jun 10 2016

CROSSREFS

Cf. A001481, A025303 (exactly 2 ways), A025304 (exactly 3 ways), A025305 (exactly 4 ways), A025306 (exactly 5 ways).

Sequence in context: A056693 A164282 A025312 * A025303 A071011 A165158

Adjacent sequences:  A024505 A024506 A024507 * A024509 A024510 A024511

KEYWORD

nonn

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 27 16:36 EDT 2017. Contains 284177 sequences.